
Rails の気持ちを考えながら
コントローラとビューを
整頓する

2026-02-19 諸橋恭介 @moro
RailsTokyo#3

dynamic!
2025-09-26 諸橋恭介 @moro

Kaigi on Rails 2025 Keynote:

https://speakerdeck.com/yahonda/railsnohua-wosiyou?slide=23

Rails の気持ちを考えながら
コントローラとビューを
整頓する

Rails の気持ちを考えながら
コントローラとビューを
整頓する

Rails の気持ちに沿うと、シンプルに実装できる

• イベントエンティティを見出して RDB に表現し、 has̲ many :through な
AR モデルとして、一級に扱う

• イベントエンティティに代表される「コト」を REST リソースとして捉え
やりたいことをその CRUD 操作で表現する

• Rails が提供するインターフェースを思い描き、 AR や AMo 、
Ruby の柔軟性を活かして継続的に開発・リファクタリングしていく

私が思う Rails の気持ち

• 昔から変わらずある基本 API は、 Rails も使って欲しかろう

• こうできたらなと思ったら、 Rails もそのとおりに発展した
API も気持ちに沿うだろう

• 基本設計を維持したうえで洗練され続けている API も、
きっとどんどん活用して欲しいのではないか

昔からある基本 API を使う

• REST であり、アプリケーション機能をリソースの CRUD で表現する

• 「 CRUD で済むアプリケーションに向いてる」というのとはちょっと筋が逆

• フレームワークとの結合には、 XXX::Base の継承を用いる

• それ以外でいっぱい継承しろ、とは言ってない。するなとも言ってないけど

• アプリケーションコードでの共通化は Concern を使う、とかも

こうしたいと思ってたら、そう発展した API を使う

• AR の DB 非依存の機能を使いたいなーと思っていたら
ActiveModel ができた

• アプリケーションでの共通規定クラスが欲しいと思ってたら
ApplicationRecord が定義されるようになった

• params.require(:q).permit(:a, :b, :c) がめんどくさいと思ってたら
params.expect が追加された

基本設計を維持、洗練され続けている API を使う

• ActiveRecord はほんとうにすごい。 DB のテーブル / カラム名を
クラス / 属性名にマッピングするという基本機能は変わらず便利なうえで、

• ActiveRecord::Relation と、その基盤の Arel::Relation 、それを使った
AssociationProxy が本当にすごいので、これを使い倒したい

• has̲ many ~ :through をさらに :through できて、まともなクエリになるんですよ !!

Rails の気持ちを考えながら
コントローラとビューを
整頓する

コントローラとビュー

• Fat Controller よくないよね、くらいしか語られていない
• 無軌道に Fat なコントローラはよくない

• (ネガティブ表現) な (対象) はよくない。それはそう

• コントローラの責務だけやるコントローラならばよいのでは ?
• (ポジティブ表現) な (対象) ならよいのでは ? それはそう

• あんまり語られてこなかったところなので考えてみたい

Rails の気持ちを考えながら
コントローラとビューを
整頓する

“

整頓 。整頓可愛

⼩ 、誰嫌。

Kent Beck 「 Tidy First? 」
第 1 部 整頓

可愛くてふわふわした小さなサブセット

• 全面リニューアルや、ナントカアーキテクチャの導入ではない

• 日々の開発をしながらコードを少しずつ設計して変更する

• dynamic! の話です

Rails の気持ちを考えながら
コントローラとビューを
整頓する

‣ ActiveRecord::Relation を活用する

‣ コントローラのインスタンス変数を減らす

‣ 一部の includes はビューで指定する

‣ ActiveRecord::Relation を活用する

‣ コントローラのインスタンス変数を減らす

‣ 一部の includes はビューで指定する

基本設計を維持、洗練され続けている API を使う

• ActiveRecord はほんとうにすごい。 DB のテーブル / カラム名を
クラス / 属性名にマッピングするという基本機能は変わらず便利なうえで、

• ActiveRecord::Relation と、その基盤の Arel::Relation 、それを使った
AssociationProxy が本当にすごいので、これを使い倒したい

• has̲ many ~ :through をさらに :through できて、まともなクエリになるんですよ !!

‣ ActiveRecord::Relation を活用する

‣ 権限チェックをアソシエーションで表現する

‣ 複雑な関係を :through の :through で表現する

‣ コントローラのインスタンス変数を減らす

‣ 一部の includes はビューで指定する

権限チェックをアソシエーションで表現する

• コントローラのコードが増える理由の一つに、対象リソース
へのアクセス可否制御のコードがある

• アソシエーションを活用することである種の権限制御ができる

• このアソシエーションを支えるのが ActiveRecord::Relation

架空の Issue 管理を例に取ります

Person.has̲ many :projects, through: :memberships

• has̲ many :through アソシエーション

• ActiveRecord で N:M 関連を表現する定番

• 交差テーブルもモデルとして扱える

• その関連でをモデルとして扱えるため、さらに情報を付加できる

• memberships の role など

has̲ many が public メソッドなので rails c での試行錯誤がやりやすいの良いですよね。好き

Rails の気持ちになって考える

• 最初の最初は habtm こと has̲ and̲ belongs̲ to̲ many 関連だけがあった

• Rails 2 の段階で、 has̲ many :through が追加された

• そのあとも、 has̲ one :through や belongs̲ to :through など、
through 族が隆盛を極めている

• ドメインの表現として優れている (きょうはこっちの話)

• 機能的にも through の through などで関連を辿れるのがちょう便利じゃないですか !? AR スゴイ !

改善前 : ロードした後に権限をチェックする

• Issue を更新する前に、以下をチェックしたい：

• アクセス者がプロジェクトのメンバーであること

• 対象の Issue が本当にそのプロジェクトのものであること

改善前 : ロードしたデータの権限をチェックする

class IssuesController < ApplicationController
 def update
 @project = Project.find_by(name: params[:project_name])
 member_ids = @project.memberships.pluck(:person_id)

 unless member_ids.include?(current_person.id)
 render plain: ' だめだよー '
 return
 end

 @issue = Issue.find(params[:id])
 unless @issue.project_id == @project.id
 render plain: ' だめだよー '
 return
 end

 @issue.update!(params.expect(issue: %i(title description status)))
 # ...

改善後 : アクセス可能な集合から対象を探す

• ロードしてから権限をチェックするのでなく

• アクセスできる関係性にある集合から検索する

• 「アクセスできる関係性」があることは、 memberships から辿れる

改善後 : アクセス可能な集合から対象を探す

class IssuesController < ApplicationController
 def update
 @project = current_person.projects.find_by!(name: params[:project_name])
 @issue = @project.issues.find(params[:id])

 @issue.update!(params.expect(issue: %i(title description status)))
 # ...
 rescue ActiveRecord::RecordNotFound
 render plain: ' だめだよー '
 end
end

改善後 : アクセス可能な集合から対象を探す

• current̲ person.projects は has̲ many ~ through:
:memberships で結ばれているプロジェクトのみを選択する

• @project.issues はそのプロジェクトのイシューだけを選択する

• それぞれ、見つからなければ RecordNotFound が発生する

• このクエリも、 ActiveRecord が効率的なやつを作ってくれる

rails-tokyo-sample(dev):001> Project.first.issues.class.ancestors
 Project Load (0.1ms) SELECT "projects".* FROM "projects" ORDER BY
"projects"."id" ASC LIMIT 1 /*application='RailsTokyoSample'*/
=>
[Issue::ActiveRecord_Associations_CollectionProxy,
 Issue::GeneratedRelationMethods,
 ApplicationRecord::GeneratedRelationMethods,
 ActiveRecord::Delegation::ClassSpecificRelation,
 ActiveRecord::Associations::CollectionProxy,
 ActiveRecord::Relation,
 ActiveRecord::SignedId::RelationMethods,
 ActiveRecord::TokenFor::RelationMethods,
 ActiveRecord::FinderMethods,
 ActiveRecord::Calculations,
 ActiveRecord::SpawnMethods,
 ...

今日はそっち掘りませんが、 Issue::ActiveRecord̲ Associations̲ CollectionProxy とかも面白い

‣ ActiveRecord::Relation を活用する

‣ 権限チェックをアソシエーションで表現する

‣ 複雑な関係を :through の :through で表現する

‣ コントローラのインスタンス変数を減らす

‣ 一部の includes はビューで指定する

複雑な関係を :through の :through で表現でする

class Assignment < ApplicationRecord
 belongs_to :issue
 belongs_to :person
end

• Issue の担当者を assign するケースを考える

• 素朴に belongs̲ to :person すると良くない

• person が離任するときにも、 person自体を消すわけにはいかない

• すると assignment を個別に消す必要がある ? なんかめんどくさい

Assignment の belongs̲ to 先は memberships かも ?

• じつは Assign 対象は「この人がこのプロジェクトに参画しているコト」では ?

• つまり belongs̲ to :memberships

• 実際のドメインモデルとしても妥当そう。 dependent: :destroy で離任したらアサインが消える

• いっぽう普段は「アサインされている人」くらいの気軽さで参照したい
• issue.assignments.map { it.membership.person } とか書きたくない

• それが through を through するだけでできる

• 発行されるクエリもまとも。 join したりまとめてプリロードしたりできる

改善後 : through: :memberships

class Issue < ApplicationRecord
 has_many :assignments
 has_many :memberships, through: :assignments
 has_many :assignees, through: :memberships, source: :person
end

class Assignment < ApplicationRecord
 belongs_to :issue
 belongs_to :membership
end

class Membership < ApplicationRecord
 belongs_to :person
 belongs_to :project
 has_many :assignments, dependent: :destroy
end

through を through する

rails-tokyo-sample(dev):002> project.issues.includes(:assignees)
 .map { [it, it.assignees.size] }

 Issue Load (0.3ms) SELECT "issues".* FROM "issues" WHERE
"issues"."project_id" = 152639770 /*application='RailsTokyoSample'*/

 Assignment Load (0.1ms) SELECT "assignments".* FROM "assignments" WHERE
"assignments"."issue_id" IN (77551669, 540637335) /
application='RailsTokyoSample'/

 Membership Load (0.1ms) SELECT "memberships".* FROM "memberships" WHERE
"memberships"."id" IN (1010729577, 996949822, 664416693) /
application='RailsTokyoSample'/

 Person Load (0.1ms) SELECT "people".* FROM "people" WHERE "people"."id" IN
(786122151, 902541635, 663665735) /*application='RailsTokyoSample'*/

rails-tokyo-sample(dev):003> project.issues.eager_load(:assignees)
 .map { [it, it.assignees.size] }

 Issue Eager Load (0.4ms) SELECT "issues"."id" AS t0_r0,
"issues"."created_at" AS t0_r1, "issues"."creator_id" AS t0_r2,
"issues"."description" AS t0_r3, "issues"."project_id" AS t0_r4,
"issues"."status" AS t0_r5, "issues"."title" AS t0_r6, "issues"."updated_at"
AS t0_r7, "people"."id" AS t1_r0, "people"."created_at" AS t1_r1,
"people"."updated_at" AS t1_r2
FROM "issues"
LEFT OUTER JOIN "assignments" ON "assignments"."issue_id" = "issues"."id"
LEFT OUTER JOIN "memberships" ON "memberships"."id" =
"assignments"."membership_id"

LEFT OUTER JOIN "people" ON "people"."id" = "memberships"."person_id"

WHERE "issues"."project_id" = 152639770 /*application='RailsTokyoSample'*/

• ActiveRecord::Relation は、 RDB の関係代数的な操作
(選択 /where, 射影 /select, 結合 /join)を Rubyオブジェクトとして扱える
• 理論そのものではないが、典型的な Web アプリでやりたいことはだいぶできる

• Relation同士のチェーンや merge とかできるのすごくないです ?

• このミラクル🦄な ActiveRecord を使い倒しましょう

• 「ちゃんとしたテーブル構造」を定義して、それを辛くなく活用できる

このアプローチの Rails の気持ち

そうはいっても集計クエリよ、、、みたいなのはあるんですが、あれは「アクティブレコードパターン」を
適用しない方が良いフォースがあるわけなので、さらに別にアプローチのほうが良いと思ってます。

‣ ActiveRecord::Relation を活用する

‣ コントローラのインスタンス変数を減らす

‣ 一部の includes はビューで指定する

コントローラのインスタンス変数を減らす

ここら辺から思想が強くなってきます。偏りがある ! 懇親会やインターネットで感想を聞かせてください。

class IssuesController < ApplicationController
 def index
 @project = current_person.projects.find_by!(name: params[:pj_name])
 @issues = @project.issues.order(updated_at: :desc)

 # こういうやつを減らしたい
 @news = @project.news.order(updated_at: :desc).limit(3)
 end

• サイドバーの項目など、アクションの本分ではないデータは
「コントローラのインスタンス変数」にはしない。

コントローラの ivar は C/V のインターフェース

• 前提として、 Rails コントローラのインスタンス変数は、
C で用意したデータを V に渡すインターフェースである

• いわゆる狭義の OOP におけるインスタンス変数とは、とか、
MVC(2) のコントローラとは、みたいなことを考えすぎない
• エントリポイントとなるメソッド (アクション) が違うと、セットされるインスタンス変数の

種類自体が変わるとか、 OOP としてはダメな感じがする w

• Rails のことを考えましょう

Rails と接続した先の、モデルのロジックを書くときなんかは、もちろん OOP の良い原則を尊重しましょう。
言い換えると、この接面を介して Rails世界とドメイン界を境界づけるというか

‣ ActiveRecord::Relation を活用する

‣ コントローラのインスタンス変数を減らす

‣ 特定表現のみで使うデータはビューでロードする

‣ partial にコンポーネントを見出す

‣ 一部の includes はビューで指定する

Rails は単一アクションから複数表現を返せる

• request.format によって、 respond̲ to で分岐したり、
index.html.erb / index.json.jbuilder の選出が変わる
• 最近も Markdown レンダラーが入ったりしてるので、この思想も現役なはず

• コントローラの責務を最小化すると、 HTML 表現と JSON 表現
とで両方で使うデータのみをビューに渡すべき

同じことは Hotwire を考えても言えそう。つまり turbo-stream が読み捨てる箇所をレンダリングするための
データをコントローラでロードするのは無駄だと思います。後述のようにクエリ自体は発行されないかもですが。

じゃあどうするか ?

• 特定テンプレートだけで必要なデータは、 ERB テンプレートや
helper でふつうにロードすれば良いのでは

• つまり、 Ruby コードを書きましょう

• *.erb だとちょっと窮屈かもしれないけれど、 *.json.jbuilder や、
*.json.ruby などではふつうに Ruby コードが書けるし

ビューでデータをロードするのアリ 🐜 ??

• ビューでデータをロードする≠ビューに SQL を書く

• 生 SQL はさすがに読みづらいからダメだと思います 🍐

• でもあくまでプラクティカルな読み辛さの問題であり、作法の話ではない

<% query = 'SELECT * FROM news WHERE ...ORDER BY created_at DESC LIMIT 3' %>
<% ActiveRecord::Base.connection.execute(query).each do |row| %>
 ...
<% end %>

この「ビューに SQL書くな」 (わかる) がだんだんと「ビューで DB にアクセスするな」になったのかなと思ってます。
またはレイヤ分割アーキテクチャの影響か。でも MVC2 一般ではなく、 Rails個別の話なので、というのが論旨です

ActiveRecord のメソッドチェーンを書くのはアリ 🐜

• モデルに published などの scope を定義して使ったり、 .order や
.limit など AR のメソッドを呼んだりするのはあり

• チェインが長くて読みづらくなったら、適宜さらに scope や
クラスメソッドを定義したり、ヘルパーに抽出したりする

<% project.news.published.order(created_at: :desc).limit(3).each do |news| %>
 ...
<% end %>

抽出先として、コントローラも Ruby コードを書きやすいのでそこでいいじゃん、というのは一周回ってアリかも。
別メソッドにして helper 宣言で使えるようにするとかは良いと思います。 news でやることじゃないけど。

そもそも AR::Relation のクエリは lazy に評価される

• project.news.published の時点ではまだ SQL は発行されず、
ActiveRecord::Relation が返る

• .each でループを回す時点で初めて SQL が発行される

• これは、コントローラで ivar に入れても同じこと

• クエリ発行をわざと lazy にする Rails の意図を感じるので、
使う側も頑張って気にしないようにしたい

それを避けるにはコントローラで .to̲ a するとかになるけど、それはやりたくないじゃないですか

‣ ActiveRecord::Relation を活用する

‣ コントローラのインスタンス変数を減らす

‣ 特定表現のみで使うデータはビューでロードする

‣ partial にコンポーネントを見出す

‣ 一部の includes はビューで指定する

partial にコンポーネントを見出す

• render :partial の分割テンプレートにコンポーネントを見出す

• 呼び出すタイミングで変数を詰め直せる

• インスタンス変数を直接参照するのは避けたほうがよいですね

• Strict Locals のことを考えても、 partial にコンポーネントを
見出しているように感じている

分割テンプレートの冒頭でフラグメントキャッシュかけると、テンプレートの変更でキャッシュが
自動でパージされる、というのもこの裏付けになっている気がするんですよね。

共通パーツをコンポーネントにする

app/views/projects/_news.html.erb
<%# locals: (project:) %>

 <%# projects のみを入力にして、そこから必要な news を引いてレンダリングする %>
 <% project.news.published.order(created_at: :desc).limit(3).each do |news| %>

 <%= link_to news.title, project_news_path(project, news) %>

 <% end %>

共通パーツをコンポーネントにする

• project を locals で受け取りそこからアソシエーションを辿る

• AR::Relation なので .published.order(…).limit(…) と続けられる

• これが長いなと思ったら、モデルにメソッドを追加したり、
ヘルパーに抽出したりする

このアプローチの Rails の気持ち
• コントローラのインスタンス変数は、ビューとの大事なインター

フェースであり、絞るべき
• HTML でも JSON でも両方で使うようなデータだけをロードする

• サイドバー用のデータはコントローラではロードしない

• 共通コンポーネントは partial を使ってコンポーネントを作る
• partial で AR のメソッドチェーンを使ってデータを取得するのもあり

• AR の lazy評価により、結果的に SQL 発行タイミングがビューになるのはわざとっぽい

余談 : view̲ component gem

• この方向性とコンフリクトしないので、印象は悪くはない

• 「表示のための Ruby ロジック」の置き場として helper があるけど、
もう少し整頓したくなった時に選択肢になりそう

• いっぽうで「分けてみようかな」の段階で導入すると侵襲度が大きい

• gem も増えるわけだし

• 1 コンポーネントごとに「専用のディレクトリ +Ruby ソースファイルとテンプレート」 vs.
「 partial テンプレート一個」

• せっかく個別に導入できるわけで、よほど複雑なやつだけとかが良いかな

‣ ActiveRecord::Relation を活用する

‣ コントローラのインスタンス変数を減らす

‣ 一部の includes はビューで指定する

一部の includes はビューで指定する

どんどん思想が強くなるよ !

• 前節は「アクションで表示したい内容の本分じゃないもの」を
コントローラでロードするのをやめようという主張だった

• 今度は「そのアクションの本分のデータ群でも、特定の表現でのみ
必要な関連のロードはビューの責務である」という主張です

class IssuesController < ApplicationController
 def index
 @project = current_person.projects.find_by!(name: params[:pj_name])
 # HTML 表示用の関連データまでコントローラでロード
 @issues = @project.issues
 .includes(creator: :avatar) # HTML 用
 .order(updated_at: :desc)
 end
end

app/views/issues/index.html.erb
<% @issues.each do |issue| %>
 <div>
 <%= image_tag issue.creator.avatar.url %>
 <%= issue.title %>
 </div>
<% end %> こういうのを

class IssuesController < ApplicationController
 def index
 @project = current_person.projects.find_by!(name: params[:pj_name])
 # コントローラは最小限。 AR::Relation のまま渡す
 @issues = @project.issues.order(updated_at: :desc)
 end
end

app/views/issues/index.html.erb
<% @issues.includes(creator: :avatar).each do |issue| %>
 <div>
 <%= image_tag issue.creator.avatar.url %>
 <%= issue.title %>
 </div>
<% end %>

こうしたい

表示する関連先を判断するのはビューの責務

• issue の起案者である person のアイコン画像を出すかどうか、を
判断するのはビューの責務である
• HTML 表現においては出すが、 JSON 表現では出さない、など

• @issues.includes(creator: :avatar) をどこで呼び出すか :
• コントローラで呼ぶと全てのテンプレートで同じ includes が適用されてしまう

• ビューで呼ぶと、各表現で必要なものを include できる

昔は使っていたけどビューを変えるうちに不要になった include が残っていて、忘れた頃にパフォーマンス
悪化の原因になった、みたいな経験ある人も多いかと思います。私もいっぱいあります w

“
設計決定際、共有知識 、

知識移動距離注意払必要。 (略)
最終的、 結合影響注意。近接

互 影響与。

Vlad Khononov 「ソフトウェア設計の結合バランス」
第 8章 距離

やはり ActiveRecord::Relation

• AR::Relation のクエリ発行が lazy であるからこそ、ビューに
渡したあとで includes を追加指定できる

• やはりこの柔軟性を使い倒すのが Rails の気持ちだろう

とはいえ、すべての includes をビューでやる、というわけじゃないです。モデルのロジックで必要な先読みは
モデルでやる。それはそう。

このアプローチの Rails の気持ち

• 前節とほぼ同じ。複数 Representation で使う処理だけにすると
コントローラのコードが減る

• 使う場所の近くで includes すると、強い結合のあるコードを
物理的に近く配置できる

• ミラクル🦄な ActiveRecord::Relation を使い倒す

Rails の気持ちを考えながら
コントローラとビューを
整頓する

‣ ActiveRecord::Relation を活用する

‣ コントローラのインスタンス変数を減らす

‣ 一部の includes はビューで指定する

整頓後に残るコントローラの責務

• Web リクエストのコンテキストから入力を取り出すところ

• 取り出した入力をファサードとなるモデルに渡して、ユースケースの
処理を呼び出すところ

• その主処理の結果をインスタンス変数に入れて、ビューに渡すところ

• 処理結果に応じて render したり redirect̲ to したりするところ

残った責務ももう少し整頓できる

• セッション情報からアクセス者取得、などには定番の
イディオムがある
• current̲ person のように ApplicationController で取得・メモ化したり

• ActiveSupport::CurrentAttribute を使ったり

• もっと基本的にプライベートメソッド抽出してもよい。 Ruby なので

• ビューでも呼びたければ helper̲ method 宣言などで拡張もできる

コントローラとビューを整頓する

• これらの処理を抽出すると、コントローラのコードを
十分に減らせそう

• 新しいライブラリやフレームワーク、アーキテクチャを
導入したわけではない

それでも残る責務はあるので、 10 行 / メソッドルールなどの厳守はできないかもですが、見通しは良くなるはず

整頓は可愛くてふわふわした小さなリファクタリング

• この話を気に入ってくれても、一気に全部やろうとしないで⚠

• 危ないからね ...

• 1 コントローラの、 1 アクションに、 1tips だけを適用する

• それで、目の前のソフトウェアが少しずつ整頓されていく

• それもまた dynamic! な活動なのだと思います

と、 API などから Rails の気持ちを (勝手に)読みとりつつ、アプリケーションがいい感じであれるように日々
整頓して修復し続けるのが「私の Rails の話」です。地味ですけどもやってみると面白いですよ !

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70

