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Rails の気持ちに沿うと、シンプルに実装できる

• イベントエンティティを見出して RDB に表現し、 has̲ many :through な 
AR モデルとして、一級に扱う 

• イベントエンティティに代表される「コト」を REST リソースとして捉え 
やりたいことをその CRUD 操作で表現する 

• Rails が提供するインターフェースを思い描き、 AR や AMo 、 
Ruby の柔軟性を活かして継続的に開発・リファクタリングしていく



私が思う Rails の気持ち

• 昔から変わらずある基本 API は、 Rails も使って欲しかろう 

• こうできたらなと思ったら、 Rails もそのとおりに発展した 
API も気持ちに沿うだろう 

• 基本設計を維持したうえで洗練され続けている API も、 
きっとどんどん活用して欲しいのではないか



昔からある基本 API を使う

• REST であり、アプリケーション機能をリソースの CRUD で表現する 

• 「 CRUD で済むアプリケーションに向いてる」というのとはちょっと筋が逆 

• フレームワークとの結合には、 XXX::Base の継承を用いる 

• それ以外でいっぱい継承しろ、とは言ってない。するなとも言ってないけど 

• アプリケーションコードでの共通化は Concern を使う、とかも



こうしたいと思ってたら、そう発展した API を使う

• AR の DB 非依存の機能を使いたいなーと思っていたら 
ActiveModel ができた 

• アプリケーションでの共通規定クラスが欲しいと思ってたら 
ApplicationRecord が定義されるようになった 

• params.require(:q).permit(:a, :b, :c) がめんどくさいと思ってたら 
params.expect が追加された



基本設計を維持、洗練され続けている API を使う

• ActiveRecord はほんとうにすごい。 DB のテーブル / カラム名を 
クラス / 属性名にマッピングするという基本機能は変わらず便利なうえで、 

• ActiveRecord::Relation と、その基盤の Arel::Relation 、それを使った 
AssociationProxy が本当にすごいので、これを使い倒したい 

• has̲ many ~ :through をさらに :through できて、まともなクエリになるんですよ !!
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コントローラとビュー

• Fat Controller よくないよね、くらいしか語られていない 
• 無軌道に Fat なコントローラはよくない 

• ( ネガティブ表現 ) な ( 対象 ) はよくない。それはそう 

• コントローラの責務だけやるコントローラならばよいのでは ? 
• ( ポジティブ表現 ) な ( 対象 ) ならよいのでは ? それはそう 

• あんまり語られてこなかったところなので考えてみたい



Rails の気持ちを考えながら 
コントローラとビューを 
整頓する



“

整頓 。整頓可愛

⼩ 、誰嫌。

Kent Beck 「 Tidy First? 」 
第 1 部 整頓



可愛くてふわふわした小さなサブセット

• 全面リニューアルや、ナントカアーキテクチャの導入ではない 

• 日々の開発をしながらコードを少しずつ設計して変更する 

• dynamic! の話です
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権限チェックをアソシエーションで表現する

• コントローラのコードが増える理由の一つに、対象リソース 
へのアクセス可否制御のコードがある 

• アソシエーションを活用することである種の権限制御ができる 

• このアソシエーションを支えるのが ActiveRecord::Relation



架空の Issue 管理を例に取ります



Person.has̲ many :projects, through: :memberships

• has̲ many :through アソシエーション 

• ActiveRecord で N:M 関連を表現する定番 

• 交差テーブルもモデルとして扱える 

• その関連でをモデルとして扱えるため、さらに情報を付加できる 

• memberships の role など

has̲ many が public メソッドなので rails c での試行錯誤がやりやすいの良いですよね。好き



Rails の気持ちになって考える

• 最初の最初は habtm こと has̲ and̲ belongs̲ to̲ many 関連だけがあった 

• Rails 2 の段階で、 has̲ many :through が追加された 

• そのあとも、 has̲ one :through や belongs̲ to :through など、 
through 族が隆盛を極めている 

• ドメインの表現として優れている ( きょうはこっちの話 ) 

• 機能的にも through の through などで関連を辿れるのがちょう便利じゃないですか !? AR スゴイ !



改善前 : ロードした後に権限をチェックする

• Issue を更新する前に、以下をチェックしたい： 

• アクセス者がプロジェクトのメンバーであること 

• 対象の Issue が本当にそのプロジェクトのものであること



改善前 : ロードしたデータの権限をチェックする

class IssuesController < ApplicationController 
  def update 
    @project = Project.find_by(name: params[:project_name]) 
    member_ids = @project.memberships.pluck(:person_id) 

    unless member_ids.include?(current_person.id) 
      render plain: ' だめだよー ' 
      return 
    end 

    @issue = Issue.find(params[:id]) 
    unless @issue.project_id == @project.id 
      render plain: ' だめだよー ' 
      return 
    end 

    @issue.update!(params.expect(issue: %i(title description status))) 
    # ...



改善後 : アクセス可能な集合から対象を探す

• ロードしてから権限をチェックするのでなく 

• アクセスできる関係性にある集合から検索する 

• 「アクセスできる関係性」があることは、 memberships から辿れる



改善後 : アクセス可能な集合から対象を探す

class IssuesController < ApplicationController 
  def update 
    @project = current_person.projects.find_by!(name: params[:project_name]) 
    @issue = @project.issues.find(params[:id]) 

    @issue.update!(params.expect(issue: %i(title description status))) 
    # ... 
  rescue ActiveRecord::RecordNotFound 
    render plain: ' だめだよー ' 
  end 
end



改善後 : アクセス可能な集合から対象を探す

• current̲ person.projects は has̲ many ~ through: 
:memberships で結ばれているプロジェクトのみを選択する 

• @project.issues はそのプロジェクトのイシューだけを選択する 

• それぞれ、見つからなければ RecordNotFound が発生する 

• このクエリも、 ActiveRecord が効率的なやつを作ってくれる



rails-tokyo-sample(dev):001> Project.first.issues.class.ancestors 
  Project Load (0.1ms)  SELECT "projects".* FROM "projects" ORDER BY 
"projects"."id" ASC LIMIT 1 /*application='RailsTokyoSample'*/ 
=> 
[Issue::ActiveRecord_Associations_CollectionProxy, 
 Issue::GeneratedRelationMethods, 
 ApplicationRecord::GeneratedRelationMethods, 
 ActiveRecord::Delegation::ClassSpecificRelation, 
 ActiveRecord::Associations::CollectionProxy, 
 ActiveRecord::Relation, 
 ActiveRecord::SignedId::RelationMethods, 
 ActiveRecord::TokenFor::RelationMethods, 
 ActiveRecord::FinderMethods, 
 ActiveRecord::Calculations, 
 ActiveRecord::SpawnMethods, 
 ...

今日はそっち掘りませんが、 Issue::ActiveRecord̲ Associations̲ CollectionProxy とかも面白い
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複雑な関係を :through の :through で表現でする

class Assignment < ApplicationRecord 
  belongs_to :issue 
  belongs_to :person 
end

• Issue の担当者を assign するケースを考える 

• 素朴に belongs̲ to :person すると良くない 

• person が離任するときにも、 person自体を消すわけにはいかない 

• すると assignment を個別に消す必要がある ? なんかめんどくさい



Assignment の belongs̲ to 先は memberships かも ?

• じつは Assign 対象は「この人がこのプロジェクトに参画しているコト」では ? 

• つまり belongs̲ to :memberships 

• 実際のドメインモデルとしても妥当そう。 dependent: :destroy で離任したらアサインが消える 

• いっぽう普段は「アサインされている人」くらいの気軽さで参照したい 
• issue.assignments.map { it.membership.person } とか書きたくない 

• それが through を through するだけでできる 

• 発行されるクエリもまとも。 join したりまとめてプリロードしたりできる



改善後 : through: :memberships



class Issue < ApplicationRecord 
  has_many :assignments 
  has_many :memberships, through: :assignments 
  has_many :assignees, through: :memberships, source: :person 
end 

class Assignment < ApplicationRecord 
  belongs_to :issue 
  belongs_to :membership 
end 

class Membership < ApplicationRecord 
  belongs_to :person 
  belongs_to :project 
  has_many :assignments, dependent: :destroy 
end

through を through する



rails-tokyo-sample(dev):002> project.issues.includes(:assignees) 
  .map { [it, it.assignees.size] } 

  Issue Load (0.3ms)  SELECT "issues".* FROM "issues" WHERE 
"issues"."project_id" = 152639770 /*application='RailsTokyoSample'*/ 

  Assignment Load (0.1ms)  SELECT "assignments".* FROM "assignments" WHERE 
"assignments"."issue_id" IN (77551669, 540637335) /
*application='RailsTokyoSample'*/ 

  Membership Load (0.1ms)  SELECT "memberships".* FROM "memberships" WHERE 
"memberships"."id" IN (1010729577, 996949822, 664416693) /
*application='RailsTokyoSample'*/ 

  Person Load (0.1ms)  SELECT "people".* FROM "people" WHERE "people"."id" IN 
(786122151, 902541635, 663665735) /*application='RailsTokyoSample'*/



rails-tokyo-sample(dev):003> project.issues.eager_load(:assignees) 
  .map { [it, it.assignees.size] } 

  Issue Eager Load (0.4ms)  SELECT "issues"."id" AS t0_r0, 
"issues"."created_at" AS t0_r1, "issues"."creator_id" AS t0_r2, 
"issues"."description" AS t0_r3, "issues"."project_id" AS t0_r4, 
"issues"."status" AS t0_r5, "issues"."title" AS t0_r6, "issues"."updated_at" 
AS t0_r7, "people"."id" AS t1_r0, "people"."created_at" AS t1_r1, 
"people"."updated_at" AS t1_r2 
FROM "issues" 
LEFT OUTER JOIN "assignments" ON "assignments"."issue_id" = "issues"."id"  
LEFT OUTER JOIN "memberships" ON "memberships"."id" = 
"assignments"."membership_id" 

LEFT OUTER JOIN "people" ON "people"."id" = "memberships"."person_id" 

WHERE "issues"."project_id" = 152639770 /*application='RailsTokyoSample'*/



• ActiveRecord::Relation は、 RDB の関係代数的な操作 
(選択 /where, 射影 /select, 結合 /join)を Rubyオブジェクトとして扱える 
• 理論そのものではないが、典型的な Web アプリでやりたいことはだいぶできる 

• Relation同士のチェーンや merge とかできるのすごくないです ? 

• このミラクル🦄な ActiveRecord を使い倒しましょう 

• 「ちゃんとしたテーブル構造」を定義して、それを辛くなく活用できる

このアプローチの Rails の気持ち

そうはいっても集計クエリよ、、、みたいなのはあるんですが、あれは「アクティブレコードパターン」を 
適用しない方が良いフォースがあるわけなので、さらに別にアプローチのほうが良いと思ってます。



‣ ActiveRecord::Relation を活用する 

‣ コントローラのインスタンス変数を減らす 

‣ 一部の includes はビューで指定する



コントローラのインスタンス変数を減らす

ここら辺から思想が強くなってきます。偏りがある ! 懇親会やインターネットで感想を聞かせてください。

class IssuesController < ApplicationController 
  def index 
    @project = current_person.projects.find_by!(name: params[:pj_name]) 
    @issues = @project.issues.order(updated_at: :desc) 

    # こういうやつを減らしたい 
    @news = @project.news.order(updated_at: :desc).limit(3) 
  end

• サイドバーの項目など、アクションの本分ではないデータは 
「コントローラのインスタンス変数」にはしない。



コントローラの ivar は C/V のインターフェース

• 前提として、 Rails コントローラのインスタンス変数は、 
C で用意したデータを V に渡すインターフェースである 

• いわゆる狭義の OOP におけるインスタンス変数とは、とか、
MVC(2) のコントローラとは、みたいなことを考えすぎない 
• エントリポイントとなるメソッド ( アクション ) が違うと、セットされるインスタンス変数の 

種類自体が変わるとか、 OOP としてはダメな感じがする w 

• Rails のことを考えましょう

Rails と接続した先の、モデルのロジックを書くときなんかは、もちろん OOP の良い原則を尊重しましょう。 
言い換えると、この接面を介して Rails世界とドメイン界を境界づけるというか



‣ ActiveRecord::Relation を活用する 

‣ コントローラのインスタンス変数を減らす 

‣ 特定表現のみで使うデータはビューでロードする 

‣ partial にコンポーネントを見出す 

‣ 一部の includes はビューで指定する



Rails は単一アクションから複数表現を返せる

• request.format によって、 respond̲ to で分岐したり、 
index.html.erb / index.json.jbuilder の選出が変わる 
• 最近も Markdown レンダラーが入ったりしてるので、この思想も現役なはず 

• コントローラの責務を最小化すると、 HTML 表現と JSON 表現 
とで両方で使うデータのみをビューに渡すべき

同じことは Hotwire を考えても言えそう。つまり turbo-stream が読み捨てる箇所をレンダリングするための 
データをコントローラでロードするのは無駄だと思います。後述のようにクエリ自体は発行されないかもですが。



じゃあどうするか ?

• 特定テンプレートだけで必要なデータは、 ERB テンプレートや
helper でふつうにロードすれば良いのでは 

• つまり、 Ruby コードを書きましょう 

• *.erb だとちょっと窮屈かもしれないけれど、 *.json.jbuilder や、 
*.json.ruby などではふつうに Ruby コードが書けるし



ビューでデータをロードするのアリ 🐜 ??

• ビューでデータをロードする≠ビューに SQL を書く 

• 生 SQL はさすがに読みづらいからダメだと思います 🍐 

• でもあくまでプラクティカルな読み辛さの問題であり、作法の話ではない

<% query = 'SELECT * FROM news WHERE ...ORDER BY created_at DESC LIMIT 3' %> 
<% ActiveRecord::Base.connection.execute(query).each do |row| %> 
  ... 
<% end %>

この「ビューに SQL書くな」 ( わかる ) がだんだんと「ビューで DB にアクセスするな」になったのかなと思ってます。 
またはレイヤ分割アーキテクチャの影響か。でも MVC2 一般ではなく、 Rails個別の話なので、というのが論旨です



ActiveRecord のメソッドチェーンを書くのはアリ 🐜 

• モデルに published などの scope を定義して使ったり、 .order や 
.limit など AR のメソッドを呼んだりするのはあり 

• チェインが長くて読みづらくなったら、適宜さらに scope や 
クラスメソッドを定義したり、ヘルパーに抽出したりする

<% project.news.published.order(created_at: :desc).limit(3).each do |news| %> 
  ... 
<% end %>

抽出先として、コントローラも Ruby コードを書きやすいのでそこでいいじゃん、というのは一周回ってアリかも。 
別メソッドにして helper 宣言で使えるようにするとかは良いと思います。 news でやることじゃないけど。



そもそも AR::Relation のクエリは lazy に評価される

• project.news.published の時点ではまだ SQL は発行されず、
ActiveRecord::Relation が返る 

• .each でループを回す時点で初めて SQL が発行される 

• これは、コントローラで ivar に入れても同じこと 

• クエリ発行をわざと lazy にする Rails の意図を感じるので、 
使う側も頑張って気にしないようにしたい

それを避けるにはコントローラで .to̲ a するとかになるけど、それはやりたくないじゃないですか
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partial にコンポーネントを見出す

• render :partial の分割テンプレートにコンポーネントを見出す 

• 呼び出すタイミングで変数を詰め直せる 

• インスタンス変数を直接参照するのは避けたほうがよいですね 

• Strict Locals のことを考えても、 partial にコンポーネントを 
見出しているように感じている

分割テンプレートの冒頭でフラグメントキャッシュかけると、テンプレートの変更でキャッシュが 
自動でパージされる、というのもこの裏付けになっている気がするんですよね。



共通パーツをコンポーネントにする

# app/views/projects/_news.html.erb 
<%# locals: (project:) %> 

<ul> 
  <%# projects のみを入力にして、そこから必要な news を引いてレンダリングする %> 
  <% project.news.published.order(created_at: :desc).limit(3).each do |news| %> 
    <li> 
      <%= link_to news.title, project_news_path(project, news) %> 
    </li> 
  <% end %> 
</ul> 



共通パーツをコンポーネントにする

• project を locals で受け取りそこからアソシエーションを辿る 

• AR::Relation なので .published.order(…).limit(…) と続けられる 

• これが長いなと思ったら、モデルにメソッドを追加したり、 
ヘルパーに抽出したりする



このアプローチの Rails の気持ち
• コントローラのインスタンス変数は、ビューとの大事なインター

フェースであり、絞るべき 
• HTML でも JSON でも両方で使うようなデータだけをロードする 

• サイドバー用のデータはコントローラではロードしない 

• 共通コンポーネントは partial を使ってコンポーネントを作る 
• partial で AR のメソッドチェーンを使ってデータを取得するのもあり 

• AR の lazy評価により、結果的に SQL 発行タイミングがビューになるのはわざとっぽい



余談 : view̲ component gem

• この方向性とコンフリクトしないので、印象は悪くはない 

• 「表示のための Ruby ロジック」の置き場として helper があるけど、 
もう少し整頓したくなった時に選択肢になりそう 

• いっぽうで「分けてみようかな」の段階で導入すると侵襲度が大きい 

• gem も増えるわけだし 

• 1 コンポーネントごとに「専用のディレクトリ +Ruby ソースファイルとテンプレート」 vs. 
「 partial テンプレート一個」 

• せっかく個別に導入できるわけで、よほど複雑なやつだけとかが良いかな



‣ ActiveRecord::Relation を活用する 

‣ コントローラのインスタンス変数を減らす 

‣ 一部の includes はビューで指定する



一部の includes はビューで指定する

どんどん思想が強くなるよ !

• 前節は「アクションで表示したい内容の本分じゃないもの」を 
コントローラでロードするのをやめようという主張だった 

• 今度は「そのアクションの本分のデータ群でも、特定の表現でのみ
必要な関連のロードはビューの責務である」という主張です



class IssuesController < ApplicationController 
  def index 
    @project = current_person.projects.find_by!(name: params[:pj_name]) 
    # HTML 表示用の関連データまでコントローラでロード 
    @issues = @project.issues 
                      .includes(creator: :avatar)  # HTML 用 
                      .order(updated_at: :desc) 
  end 
end

# app/views/issues/index.html.erb 
<% @issues.each do |issue| %> 
  <div> 
    <%= image_tag issue.creator.avatar.url %> 
    <%= issue.title %> 
  </div> 
<% end %> こういうのを



class IssuesController < ApplicationController 
  def index 
    @project = current_person.projects.find_by!(name: params[:pj_name]) 
    # コントローラは最小限。 AR::Relation のまま渡す 
    @issues = @project.issues.order(updated_at: :desc) 
 end 
end

# app/views/issues/index.html.erb 
<% @issues.includes(creator: :avatar).each do |issue| %> 
  <div> 
    <%= image_tag issue.creator.avatar.url %> 
    <%= issue.title %> 
  </div> 
<% end %>

こうしたい



表示する関連先を判断するのはビューの責務

• issue の起案者である person のアイコン画像を出すかどうか、を 
判断するのはビューの責務である 
• HTML 表現においては出すが、 JSON 表現では出さない、など 

• @issues.includes(creator: :avatar) をどこで呼び出すか : 
• コントローラで呼ぶと全てのテンプレートで同じ includes が適用されてしまう 

• ビューで呼ぶと、各表現で必要なものを include できる

昔は使っていたけどビューを変えるうちに不要になった include が残っていて、忘れた頃にパフォーマンス 
悪化の原因になった、みたいな経験ある人も多いかと思います。私もいっぱいあります w



“
設計決定際、共有知識 、

知識移動距離注意払必要。 (略 )
最終的、 結合影響注意。近接

互 影響与。

Vlad Khononov 「ソフトウェア設計の結合バランス」 
第 8章 距離



やはり ActiveRecord::Relation

• AR::Relation のクエリ発行が lazy であるからこそ、ビューに 
渡したあとで includes を追加指定できる 

• やはりこの柔軟性を使い倒すのが Rails の気持ちだろう

とはいえ、すべての includes をビューでやる、というわけじゃないです。モデルのロジックで必要な先読みは 
モデルでやる。それはそう。



このアプローチの Rails の気持ち

• 前節とほぼ同じ。複数 Representation で使う処理だけにすると
コントローラのコードが減る 

• 使う場所の近くで includes すると、強い結合のあるコードを 
物理的に近く配置できる 

• ミラクル🦄な ActiveRecord::Relation を使い倒す



Rails の気持ちを考えながら 
コントローラとビューを 
整頓する



‣ ActiveRecord::Relation を活用する 

‣ コントローラのインスタンス変数を減らす 

‣ 一部の includes はビューで指定する



整頓後に残るコントローラの責務

• Web リクエストのコンテキストから入力を取り出すところ 

• 取り出した入力をファサードとなるモデルに渡して、ユースケースの 
処理を呼び出すところ 

• その主処理の結果をインスタンス変数に入れて、ビューに渡すところ 

• 処理結果に応じて render したり redirect̲ to したりするところ



残った責務ももう少し整頓できる

• セッション情報からアクセス者取得、などには定番の 
イディオムがある 
• current̲ person のように ApplicationController で取得・メモ化したり 

• ActiveSupport::CurrentAttribute を使ったり 

• もっと基本的にプライベートメソッド抽出してもよい。 Ruby なので 

• ビューでも呼びたければ helper̲ method 宣言などで拡張もできる



コントローラとビューを整頓する

• これらの処理を抽出すると、コントローラのコードを
十分に減らせそう 

• 新しいライブラリやフレームワーク、アーキテクチャを
導入したわけではない

それでも残る責務はあるので、 10 行 / メソッドルールなどの厳守はできないかもですが、見通しは良くなるはず



整頓は可愛くてふわふわした小さなリファクタリング

• この話を気に入ってくれても、一気に全部やろうとしないで⚠ 

• 危ないからね ... 

• 1 コントローラの、 1 アクションに、 1tips だけを適用する 

• それで、目の前のソフトウェアが少しずつ整頓されていく 

• それもまた dynamic! な活動なのだと思います

と、 API などから Rails の気持ちを (勝手に )読みとりつつ、アプリケーションがいい感じであれるように日々 
整頓して修復し続けるのが「私の Rails の話」です。地味ですけどもやってみると面白いですよ !
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