
全問正解率 3%: 
RubyKaigiで出題したやりがちな
危険コード5選
Kaigi on Rails 2025, 2025.09.26 (Fri.)＠JP TOWER Hall & Conference Hall Red

Hubble,Inc Backend Tech Lead 

Yuta Nakashima



partner-with-rubystacknews

https://rubystacknews.com/partner-with-rubystacknews/
https://rubystacknews.com/partner-with-rubystacknews/
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Hubble,Inc Backend Tech Lead

エンジニア歴6年、Rails歴4年半
HubbleにCTO以来の一人目バックエンドエンジニアとして入
社
趣味: メタル/ラウド系のライブでよくモッシュしてます

自己紹介
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ハブル

AI契約業務・管理クラウド

契約書の作成、社内のやりとり、
検討過程や合意文書を一元管
理。
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契約業務の
オールインワンプラットフォーム

発生・起案 審査・交渉 押印申請・捺印 保管・管理 更新
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RubyKaigi 2025

初参加
初スポンサー
初ブース出展

前提
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ブースにてコード問題を出題
全5問で正解数に応じて豪華景品を配布

前提
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結果、3日間で100名程度の方が参加
5問全問正解が 3名
3問以上正解が約 15名
回答しづらい環境ではありましたが、想像以上に
難問だった可能性...🤔

前提
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もしかしてKaigi on Railsで内容・解答を話せば、
役立つのでは...？
→ この発表になります！

前提
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今回話すことは所謂、 教科書的な話
● Transaction の範囲
● 非同期処理発火のタイミング
● エラーハンドリング
● SQL 側の責務とRuby側の責務の切り分け、テーブル設計
実際のプロダクトコード になると気づかずに書いてしまっていることや、レ
ビューでも気づかないことが往々にしてある

本題
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問題文  + 問題のあるコード
(問題文)

● バグ要因、パフォーマンス、セキュリティ観点で何箇所か直したほうが
良いところがあるので、どう修正すべきか(Hogeをtransaction外に出
す等)を個数と行数を含めて箇条書きで回答してください。

● 問題の都合上、ModelバリデーションではなくてController側でバリ
デーションしていること、Controllerにビジネスロジックを書いているこ
と、外部APIコールのレスポンス制御部分は対象外です。

出題形式
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Hubbleを模した
ドキュメントアップロードAPIが題
材 11
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● アクセストークンからユーザを取得
● ユーザが取得できなければ、401エラー

問題なさそう！
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● バリデーションエラーの配列を作成し、エラーを格納
● 空配列でなければ、400エラー

問題なさそう！
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● ユーザの組織からフォルダを全て取ってきてfolder_idと一
致するかをany?で評価

🤔
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問題点1: SQLで全件取得

● 大量のオブジェクト生成: N個のフォルダがある場合、N個のActiveRecordオブジェクトがメモリ上に生成され
る 

● メモリリーク: 不要なデータが大量にメモリに保持され、GCの負荷が増大
● ネットワーク帯域の無駄遣い: DBサーバとAPIサーバ間の不要な通信量増大 (コネクションプール を占有して他

APIにも影響する可能性)

● DBサーバの CPU負荷: 不要なデータ(id以外のカラム)をシリアライズして送信する処理コスト
● レスポンス時間の劣化: フォルダ数に比例してレスポンスが遅くなる(最悪計算量 O(N))

● スケーラビリティの欠如: データ量増加に対して線形的にパフォーマンスが悪化(エンタープライズだと、数万 - 

数十万は全然有り得る話 ) 19



解決方法1: exists?でSQLで存在確認

● ActiveRecordからBooleanに: exists?の返り値がTrueClass or FalseClassの1オブジェクトだけになるので大幅削減
● ネットワーク帯域を圧迫しない: DBサーバとAPIサーバ間の不要な通信量が最小
● DBサーバのCPU負荷が最小: 不要なカラムのデータを取得しない

○ 発行クエリ
○ 今回だと約8バイト、全件取得だと約200-500バイト（カラム数による）✕ 件数

● レスポンス時間とスケーラビリティ: フォルダ数に関係なくインデックス(今回であればidでprimary key)があればO(logN)

SELECT 1 AS one FROM folders WHERE folders.id = 1 LIMIT 

1
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● ユーザの組織からドキュメントを全て取ってきてる
● ドキュメントのリレーション先のドキュメント詳細をeachで取

得してる

🤔 22



問題点2: SQLクエリではなく、Ruby側で計算

● 1 + N回のクエリ実行: 1,000件のドキュメントがあれば1,001回のクエリが発行される（初回のdocuments取得 + 各documentごと
のdocument_detail取得）

● コネクションプール枯渇: 大量の小さなクエリでデータベース接続が長時間占有され、他のリクエストが接続待ちになる可能性
(Railsは1リクエスト、1コネクション)

● DBサーバCPU負荷: 同じような小さなクエリを大量に処理する非効率性と クエリパーシング の繰り返し
○ クエリパーシング(字句解析 )はSQL実行のおよそ40%を占める
○ 同一クエリでもパラメータが違えば別クエリとして扱われる
○ キャッシュが効かずパーシングが繰り返される

● ラウンドトリップ回数増大: アプリケーションサーバとDBサーバ間の通信が N回発生し、ネットワークレイテンシがN倍に累積(一般に
同一リージョン通信は0.5ms - 2.0ms、クエリ実行自体は0.1ms - 2.0ms) 23



解決方法2: sumでSQLで計算

● 単一クエリ実行: 1,001回 → 1回のクエリで処理完了
● SQL集約関数活用 : データベースエンジンの最適化されたSUM処理を利用
● サーバCPU負荷軽減 : Ruby側での繰り返し処理が不要
● ネットワーク通信最小化: 1回の通信で処理完了

(別解) organizationテーブルにtotal_filesizeカラムを持つ
● ドキュメントとの分離: ドキュメント数が増えても影響なし、計算量OrganizationのO(logN)

(別解) KVSキャッシュ + 更新時検証
● EC在庫管理等 によくあるパターン 24
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問題点3: トランザクション内での外部API実行

● 参照ロック長時間保持: 外部キー制約により参照先テーブル（Organization）の行が外
部APIのresponseが終わるまで共有ロック状態

● 排他ロック待ち発生: 同一Organization行の更新・削除操作が全てブロックされる
● 問題切り分けが難化: ロジックが問題なのか、外部API障害なのかの切り分けが難しく

なる
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解決方法3: 外部API実行をトランザクション外に

● 通常のTransactionと同じロック: 長時間参照先テーブルをロックしない
● 問題切り分けが容易: ロジックが問題なのか、外部API障害なのかの切り

分けがわかりやすい
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問題点4: トランザクション内での非同期処理発火

● Race Condition発生: Job実行タイミングによってはコミット前のデータにアクセスして
例外発生

● ロールバック時の不整合: トランザクションロールバック後も非同期ジョブがキューに残
存して不要実行

● 不整合データ生成: ロールバックしているのに他モデルのデータを作ってしまう可能性
● エラー状態の不明確性: トランザクション失敗とジョブ失敗の区別が困難
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解決方法4: 非同期処理発火をトランザクション外に

● DBの整合性 : 未コミットデータアクセス問題の解消
● システム安定性の改善: Race Conditionやデッドロックの回避
● エラー処理の明確化: 問題の切り分けとデバッグ効率化
● 開発・保守性向上: テスト容易性とコードの責務分離
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より詳細なことは明日の14:10からの発表で！
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問題点5: StandardErrorで全例外を処理

● 内部実装詳細の漏洩 : 内部エラー時にDB構造、テーブル名、カラム名、ファイルパス、
環境変数等が露出

● SQLインジェクション: DBエラーで内部クエリ構造が露出
● HTTPステータスコードの固定化: 全てのエラーが500番になり適切でない(この場合だ

とバリデーションエラーも500になる)

● ユーザビリティ低下: 技術的なエラーメッセージでユーザーが混乱(ユーザーが次に何
をすべきかわからない)

● テスト品質低下: エラー条件のテストが不十分になる 36



解決方法5: エラー分岐、ステータスコード整理

● 内部情報漏洩防止 : 技術的詳細を隠蔽し、攻撃者に有用な情報を提供しない
● クライアント側エラー判別しやすさ: バリデーションエラー（400）と外部サービスエラー（502/504）の明確

な区別
● 具体的なエラーケース検証: 各例外（TimeoutError、ServiceError等）を個別にテスト可能 37



まとめ
● 意外とちゃんと 意識しないといけないポイントが多い

○ Transactionの範囲
○ 非同期処理発火タイミング
○ エラーハンドリング
○ SQL側の責務とRuby側の責務の切り分け、テーブル設計

● 知識的に知ってても プロダクトコード になると意識せずに書きがち
● 特に最近のAIによるVibe Codingでは意識していきたいところ
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最後に
Hubbleでは様々な技術的課題 (特にパフォーマンスチューニング)に
取り組んでいます！

ドライブシステムの複雑な親子関係のRuby計算をSQLに置き換え
アプリケーションの権限管理をSQLでのBit演算で計算
AIエージェントの他機能への横展開, and more…

そういったことに興味のある方はぜひ ブースまで！
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