
全問正解率 3%:
RubyKaigiで出題したやりがちな
危険コード5選
Kaigi on Rails 2025, 2025.09.26 (Fri.)＠JP TOWER Hall & Conference Hall Red

Hubble,Inc Backend Tech Lead

Yuta Nakashima

partner-with-rubystacknews

https://rubystacknews.com/partner-with-rubystacknews/
https://rubystacknews.com/partner-with-rubystacknews/

Yuta Nakashima

Hubble,Inc Backend Tech Lead

エンジニア歴6年、Rails歴4年半
HubbleにCTO以来の一人目バックエンドエンジニアとして入
社
趣味: メタル/ラウド系のライブでよくモッシュしてます

自己紹介

2

ハブル

AI契約業務・管理クラウド

契約書の作成、社内のやりとり、
検討過程や合意文書を一元管
理。

3

契約業務の
オールインワンプラットフォーム

発生・起案 審査・交渉 押印申請・捺印 保管・管理 更新

4

RubyKaigi 2025

初参加
初スポンサー
初ブース出展

前提

5

ブースにてコード問題を出題
全5問で正解数に応じて豪華景品を配布

前提

6

結果、3日間で100名程度の方が参加
5問全問正解が 3名
3問以上正解が約 15名
回答しづらい環境ではありましたが、想像以上に
難問だった可能性...🤔

前提

7

もしかしてKaigi on Railsで内容・解答を話せば、
役立つのでは...？
→ この発表になります！

前提

8

今回話すことは所謂、 教科書的な話
● Transaction の範囲
● 非同期処理発火のタイミング
● エラーハンドリング
● SQL 側の責務とRuby側の責務の切り分け、テーブル設計
実際のプロダクトコード になると気づかずに書いてしまっていることや、レ
ビューでも気づかないことが往々にしてある

本題

9

問題文 + 問題のあるコード
(問題文)

● バグ要因、パフォーマンス、セキュリティ観点で何箇所か直したほうが
良いところがあるので、どう修正すべきか(Hogeをtransaction外に出
す等)を個数と行数を含めて箇条書きで回答してください。

● 問題の都合上、ModelバリデーションではなくてController側でバリ
デーションしていること、Controllerにビジネスロジックを書いているこ
と、外部APIコールのレスポンス制御部分は対象外です。

出題形式

10

Hubbleを模した
ドキュメントアップロードAPIが題
材 11

12

13

● アクセストークンからユーザを取得
● ユーザが取得できなければ、401エラー

問題なさそう！
14

15

● バリデーションエラーの配列を作成し、エラーを格納
● 空配列でなければ、400エラー

問題なさそう！
16

17

● ユーザの組織からフォルダを全て取ってきてfolder_idと一
致するかをany?で評価

🤔
18

問題点1: SQLで全件取得

● 大量のオブジェクト生成: N個のフォルダがある場合、N個のActiveRecordオブジェクトがメモリ上に生成され
る

● メモリリーク: 不要なデータが大量にメモリに保持され、GCの負荷が増大
● ネットワーク帯域の無駄遣い: DBサーバとAPIサーバ間の不要な通信量増大 (コネクションプール を占有して他

APIにも影響する可能性)

● DBサーバの CPU負荷: 不要なデータ(id以外のカラム)をシリアライズして送信する処理コスト
● レスポンス時間の劣化: フォルダ数に比例してレスポンスが遅くなる(最悪計算量 O(N))

● スケーラビリティの欠如: データ量増加に対して線形的にパフォーマンスが悪化(エンタープライズだと、数万 -

数十万は全然有り得る話) 19

解決方法1: exists?でSQLで存在確認

● ActiveRecordからBooleanに: exists?の返り値がTrueClass or FalseClassの1オブジェクトだけになるので大幅削減
● ネットワーク帯域を圧迫しない: DBサーバとAPIサーバ間の不要な通信量が最小
● DBサーバのCPU負荷が最小: 不要なカラムのデータを取得しない

○ 発行クエリ
○ 今回だと約8バイト、全件取得だと約200-500バイト（カラム数による）✕ 件数

● レスポンス時間とスケーラビリティ: フォルダ数に関係なくインデックス(今回であればidでprimary key)があればO(logN)

SELECT 1 AS one FROM folders WHERE folders.id = 1 LIMIT

1

20

21

● ユーザの組織からドキュメントを全て取ってきてる
● ドキュメントのリレーション先のドキュメント詳細をeachで取

得してる

🤔 22

問題点2: SQLクエリではなく、Ruby側で計算

● 1 + N回のクエリ実行: 1,000件のドキュメントがあれば1,001回のクエリが発行される（初回のdocuments取得 + 各documentごと
のdocument_detail取得）

● コネクションプール枯渇: 大量の小さなクエリでデータベース接続が長時間占有され、他のリクエストが接続待ちになる可能性
(Railsは1リクエスト、1コネクション)

● DBサーバCPU負荷: 同じような小さなクエリを大量に処理する非効率性と クエリパーシング の繰り返し
○ クエリパーシング(字句解析)はSQL実行のおよそ40%を占める
○ 同一クエリでもパラメータが違えば別クエリとして扱われる
○ キャッシュが効かずパーシングが繰り返される

● ラウンドトリップ回数増大: アプリケーションサーバとDBサーバ間の通信が N回発生し、ネットワークレイテンシがN倍に累積(一般に
同一リージョン通信は0.5ms - 2.0ms、クエリ実行自体は0.1ms - 2.0ms) 23

解決方法2: sumでSQLで計算

● 単一クエリ実行: 1,001回 → 1回のクエリで処理完了
● SQL集約関数活用 : データベースエンジンの最適化されたSUM処理を利用
● サーバCPU負荷軽減 : Ruby側での繰り返し処理が不要
● ネットワーク通信最小化: 1回の通信で処理完了

(別解) organizationテーブルにtotal_filesizeカラムを持つ
● ドキュメントとの分離: ドキュメント数が増えても影響なし、計算量OrganizationのO(logN)

(別解) KVSキャッシュ + 更新時検証
● EC在庫管理等 によくあるパターン 24

25

26

問題点3: トランザクション内での外部API実行

● 参照ロック長時間保持: 外部キー制約により参照先テーブル（Organization）の行が外
部APIのresponseが終わるまで共有ロック状態

● 排他ロック待ち発生: 同一Organization行の更新・削除操作が全てブロックされる
● 問題切り分けが難化: ロジックが問題なのか、外部API障害なのかの切り分けが難しく

なる
27

解決方法3: 外部API実行をトランザクション外に

● 通常のTransactionと同じロック: 長時間参照先テーブルをロックしない
● 問題切り分けが容易: ロジックが問題なのか、外部API障害なのかの切り

分けがわかりやすい

28

29

問題点4: トランザクション内での非同期処理発火

● Race Condition発生: Job実行タイミングによってはコミット前のデータにアクセスして
例外発生

● ロールバック時の不整合: トランザクションロールバック後も非同期ジョブがキューに残
存して不要実行

● 不整合データ生成: ロールバックしているのに他モデルのデータを作ってしまう可能性
● エラー状態の不明確性: トランザクション失敗とジョブ失敗の区別が困難

30

解決方法4: 非同期処理発火をトランザクション外に

● DBの整合性 : 未コミットデータアクセス問題の解消
● システム安定性の改善: Race Conditionやデッドロックの回避
● エラー処理の明確化: 問題の切り分けとデバッグ効率化
● 開発・保守性向上: テスト容易性とコードの責務分離

31

32

より詳細なことは明日の14:10からの発表で！
33

34

35

問題点5: StandardErrorで全例外を処理

● 内部実装詳細の漏洩 : 内部エラー時にDB構造、テーブル名、カラム名、ファイルパス、
環境変数等が露出

● SQLインジェクション: DBエラーで内部クエリ構造が露出
● HTTPステータスコードの固定化: 全てのエラーが500番になり適切でない(この場合だ

とバリデーションエラーも500になる)

● ユーザビリティ低下: 技術的なエラーメッセージでユーザーが混乱(ユーザーが次に何
をすべきかわからない)

● テスト品質低下: エラー条件のテストが不十分になる 36

解決方法5: エラー分岐、ステータスコード整理

● 内部情報漏洩防止 : 技術的詳細を隠蔽し、攻撃者に有用な情報を提供しない
● クライアント側エラー判別しやすさ: バリデーションエラー（400）と外部サービスエラー（502/504）の明確

な区別
● 具体的なエラーケース検証: 各例外（TimeoutError、ServiceError等）を個別にテスト可能 37

まとめ
● 意外とちゃんと 意識しないといけないポイントが多い

○ Transactionの範囲
○ 非同期処理発火タイミング
○ エラーハンドリング
○ SQL側の責務とRuby側の責務の切り分け、テーブル設計

● 知識的に知ってても プロダクトコード になると意識せずに書きがち
● 特に最近のAIによるVibe Codingでは意識していきたいところ

38

最後に
Hubbleでは様々な技術的課題 (特にパフォーマンスチューニング)に
取り組んでいます！

ドライブシステムの複雑な親子関係のRuby計算をSQLに置き換え
アプリケーションの権限管理をSQLでのBit演算で計算
AIエージェントの他機能への横展開, and more…

そういったことに興味のある方はぜひ ブースまで！
39

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40

