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PostgreSQL 18 Released!
2025 年 9 ⽉ 25 ⽇
https://www.postgresql.org/about/news/postgresql-18-released-3142/
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Rails の PostgreSQL 対応とは
バージョン互換性

Rails 6.0 以降は PostgreSQL 9.3 以上に対応
「最⼩対応バージョン」のみを定義しており、上限は設けていない

つまり、現時点では PostgreSQL 18 も対応バージョンに含まれる

データベース新機能対応

supports_< 機能名 >? メソッドによる判別
例 : supports_virtual_columns? (PostgreSQL Adapter)

def supports_virtual_columns?
  database_version >= 12_00_00 # >= 12.0
end
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Note: 「対応」という⽤語
本プレゼンテーションでは、 https://rubyonrails.org/maintenance より New Features または
Bug Fixes でメンテナンスすることを「対応」と呼んでいます

New Features
Bug Fixes
Security Fixes
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Rails の PostgreSQL 対応を構成する要素

協調する 3 つの要素
Rails : PostgreSQLAdapter

https://github.com/rails/rails/blob/main/activerecord/lib/active_record/connection
_adapters/postgresql_adapter.rb

Database driver : pg  gem
https://github.com/ged/ruby-pg

Client library : libpq
https://github.com/postgres/postgres/tree/master/src/interfaces/libpq
https://git.postgresql.org/gitweb/?p=postgresql.git;a=tree;f=src/interfaces/libpq

Rails アプリケーション開発者への振る舞いを担保するのは Rails 6



Rails の PostgreSQL 18 バージョン互換性
プロトコルバージョンの更新とキャンセルキー⻑の変更
パーティション表の UNLOGGED サポートの削除
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プロトコルバージョンの更新とキャンセルキー⻑の変更
3.0 : PostgreSQL 7.4 で追加、 PostgreSQL 18 でも利⽤可能

キャンセルキー ( クエリーをキャンセルするのに必要なキー ) の⻑さは 4byte 固定
総当たりにより特定される可能性があるとの懸念

3.2 : PostgreSQL 18 で追加

⻑いキャンセルキー ( 最⼤ 256byte) 対応
3.1 は PgBouncer が 3.1 を 3.0 として扱っていたため skip

PostgreSQL(libpq) 18 は デフォルトでプロトコルバージョン 3.0 を利⽤
https://www.postgresql.org/about/news/postgresql-18-released-3142/

libpq still uses version 3.0 by default while clients (e.g., drivers, poolers, proxies)
add support for the new protocol version. 8



pg gem と⻑いキャンセルキーの対応
pg gem 1.5.9 以下のバージョンは⻑いキャンセルキーに対応していない

PG::Connection#cancel  が PG::Connection#backend_key  の取得に失敗
pg gem 1.6.0 で PostgreSQL 17 のPQcancelBlocking と PQcancelStart 関数に対応

PG::Connection#backend_key の取得が不要に
https://github.com/ged/ruby-pg/pull/614

当時 v1.6.0.rc1 だったため、 1.6.0 をリリースしてほしいという issue
https://github.com/ged/ruby-pg/issues/639

1.6.0.rc2 Rails の CI が green なことを確認し、 1.6.0 をリリースしてもらう
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Rails と⻑いキャンセルキーの対応
Rails は pg gem 1.1 以上、 2.0 未満に対応している gem "pg", "~> 1.1"

pg gem 1.5.9 以下のユーザーへの対応が必要

Rails の対応 : libpq が 18 以上かつ pg gem 1.6.0 未満で
ActiveRecord::ConnectionAdapters::DatabaseStatements#cancel_any_running

_query で PG::Connection#cancel を呼ばない

https://github.com/rails/rails/pull/55540

理由 : cancel_any_running_query は private メソッド

exec_rollback_db_transaction と exec_restart_db_transaction  ( いずれも
⾮公開 API) からのみ呼ばれる
クエリーがキャンセルされなくてもトランザクションはいずれロールバックされる10



Rails と⻑いキャンセルキーの対応
Rails 8.1.0 に⼊る予定、 Rails 8.0.3 で修正ずみ

Bug Fixes としての対応 (PostgreSQL 9.3 以上をサポートするということ )
Rails 7.2 へのバックポートはしない

新しい PostgreSQL バージョンの対応は Security Fixes ではない
個⼈的な推奨

PostgreSQL (libpq) 18 を使う場合は、 pg gem 1.6 以上 を利⽤
pg gem 1.6.0 以降は Linux でも fat gem( 例 : 1.6.2-x86_64-linux)

1.6.2 では libpq 17.6 を同梱
fat gem であっても PostgreSQL client は必要
config.active_record.schema_format = :sql  では pg_dump
dbconsole  では psql が必要なため、同じ libpq を使いたい場合は non-fat gem
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パーティション表の UNLOGGED サポートの削除
UNLOGGED : テーブルへの書き込み時に WAL(Write Ahead Log) を書かない

⾼速な書き込みとクラッシュセーフではないトレードオフ

Rails フレームワークのテストの⾼速化のため UNLOGGED テーブルを利⽤

https://github.com/rails/rails/pull/47499

PostgreSQL 18 はパーティション表に UNLOGGED を指定するとエラーになる

Rails フレームワークテストではパーティション表を LOGGED で作成するようにした

https://github.com/rails/rails/pull/53439

rails/rails#47499 が⼊った 7.1(7-1-stable ブランチ ) に遡ってバックポート
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バージョン互換性対応の pull request を PostgreSQL 正
式版リリース前にマージした ( できた ) 理由

PostgreSQL 18 RC 1 の動作を確認した上でマージしている
https://www.postgresql.org/about/news/postgresql-18-rc-1-released-3130/

パーティション表の UNLOGGED サポートの削除対応
仮に revert されても Rails フレームワークのユニットテスト内部の変更のみでユー
ザーに影響がない

Rails と⻑いキャンセルキーの対応
過去にリリースされた ( 変えられない ) pg gem 1.5.9 以下の対応
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Rails の PostgreSQL 18 データベース新機能対応
pg_stat_statements の変更
仮想⽣成列 (virtual generated columns)
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pg_stat_statements の変更
pg_stat_statements とは
https://www.postgresql.jp/docs/17/pgstatstatements.html

pg_stat_statements モジュールは、サーバで実⾏されたすべての SQL ⽂のプラン
⽣成時と実⾏時の統計情報を記録する⼿段を提供します。

Kaigi on Rails 2024 "Rails の Pull requests のレビューの時に私が考えていること " で話
した 「 pg_stat_statements の " 汚染 " 」への改善が PostgreSQL 18 に⼊った

https://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=62d712ecf

Patch をテストしたりユースケースを pgsql-hackers メーリングリストに投稿した

リリースノートの Acknowledgments に名前が載る

https://www.postgresql.org/docs/current/release-18.html 15



Note : データベース固有 (specific) と⾮依存 (agnostic) の
両⽴

バランス

特定データベース固有機能であっても追加されることはある
遅延制約 (PostgreSQL のみ ) など

複数のデータベースで類似した機能が存在する場合

Rails からは共通の API 、名称になるように努めている
例 : Rails 8.1 での Disabling index 対応

https://github.com/rails/rails/pull/54332

MySQL では Invisible Indexes, MariaDB では Ignored Indexes と呼ばれるもの
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⽣成列 (generated columns) とは
https://www.postgresql.jp/docs/17/ddl-generated-columns.html

⽣成列は常に他の列から計算される特別な列です。 ですから、これは列におけるテ
ーブルに対するビューのようなものです。

Rails での⽣成列の例 (t.virtual )

create_table :users do |t|
  t.string :name
  t.virtual :name_upcased, type: :string, as: 'upper(name)', stored: true
end
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データベースアダプタごとの⽣成列対応
MySQL 5.7.5+ and MariaDB 5.2.0+.

Rails 5.1
https://github.com/rails/rails/commit/65bf1c60053e727835e06392d27a2fb49
665484c

SQLite 3.31.0+
Rails 7.2
https://github.com/rails/rails/pull/49346

PostgreSQL 12+
Rails 7.0
https://github.com/rails/rails/pull/41856
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PostgreSQL と⽣成列
PostgreSQL 12 では、格納⽣成列 (stored generated columns) のみ対応

他のカラムから演算した結果をディスクに保存する
演算は書き込み時に⾏われる

PostgreSQL 18 から、仮想⽣成列 (virtual generated columns) 対応追加
他のカラムから演算した結果をディスクに保存しない
演算は読み込み時に⾏われる
仮想⽣成列がデフォルト

MySQL/MariaDB, SQLite では仮想⽣成列がデータベースとしてのデフォルトの動作
オプションで格納⽣成列も利⽤可能
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Rails 8.0 以下の PostgreSQL 12+ での⽣成列対応
格納⽣成列のみ対応

create_table :users do |t|
  t.string :name
  t.virtual :name_upcased, type: :string, as: 'upper(name)', stored: true
end

stored: true を必須とし、それ以外はArgumentError を raise していた

PostgreSQL currently does not support VIRTUAL (not persisted) generated columns.
Specify 'stored: true' option for '#{options[:column].name}'

https://github.com/rails/rails/pull/41856#issuecomment-920933731
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PostgreSQL 18+ での⽣成列対応 (rails/rails#55142)
PostgreSQL 18 以上の場合に仮想⽣成列に対応

stored: false を指定可能 (Rails のデフォルトの動作 )

create_table :users do |t|
    t.string :name
    t.virtual :lower_name,  type: :string,  as: "LOWER(name)", stored: false
    t.virtual :name_length, type: :integer, as: "LENGTH(name)"
end

https://github.com/rails/rails/pull/55142 で open 中
⼊る場合は main ブランチのみ (New Features として )
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データベース新機能を利⽤する Rails の新機能
PostgreSQL 正式版リリース前は追加された機能の revert や変更の可能性を想定

仮想⽣成列、セキュリティや振る舞いなど PostgreSQL 開発コミュニティで議論

"pg18: Virtual generated columns are not (yet) safe when superuser selects from
them"
https://www.postgresql.org/message-
id/flat/156542c6fb54bfadf2e67bcb419749bba6e65149.camel%40j-
davis.com#993fe6ec9cf7bf2ab5ab7eb8c9fbc580

パッチが提供され、議論はおさまった
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PostgreSQL 18 Released!
2025 年 9 ⽉ 25 ⽇に PostgreSQL 18 リリース
https://www.postgresql.org/docs/current/release-18.html#RELEASE-18-HIGHLIGHTS

Virtual generated columns that compute their values during read operations. This
is now the default for generated columns.

https://github.com/rails/rails/pull/55142 ?
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Thank you for listening - enjoy PostgreSQL 18 with
Rails 8.1!
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