
Rails の PostgreSQL 18 対応
Rails meets PostgreSQL 18
Yasuo Honda
Kaigi on Rails 2025 - Sep 26, 2025

1

About Me | Yasuo Honda
Rails Committer
Maintainer of Active Record Oracle enhanced adapter

Find me on:

https://github.com/yahonda
https://rubyfriends.app/profiles/VRDX

2

PostgreSQL 18 Released!
2025 年 9 ⽉ 25 ⽇
https://www.postgresql.org/about/news/postgresql-18-released-3142/

3

Rails の PostgreSQL 対応とは
バージョン互換性

Rails 6.0 以降は PostgreSQL 9.3 以上に対応
「最⼩対応バージョン」のみを定義しており、上限は設けていない

つまり、現時点では PostgreSQL 18 も対応バージョンに含まれる

データベース新機能対応

supports_< 機能名 >? メソッドによる判別
例 : supports_virtual_columns? (PostgreSQL Adapter)

def supports_virtual_columns?
 database_version >= 12_00_00 # >= 12.0
end

4

Note: 「対応」という⽤語
本プレゼンテーションでは、 https://rubyonrails.org/maintenance より New Features または
Bug Fixes でメンテナンスすることを「対応」と呼んでいます

New Features
Bug Fixes
Security Fixes

5

Rails の PostgreSQL 対応を構成する要素

協調する 3 つの要素
Rails : PostgreSQLAdapter

https://github.com/rails/rails/blob/main/activerecord/lib/active_record/connection
_adapters/postgresql_adapter.rb

Database driver : pg gem
https://github.com/ged/ruby-pg

Client library : libpq
https://github.com/postgres/postgres/tree/master/src/interfaces/libpq
https://git.postgresql.org/gitweb/?p=postgresql.git;a=tree;f=src/interfaces/libpq

Rails アプリケーション開発者への振る舞いを担保するのは Rails 6

Rails の PostgreSQL 18 バージョン互換性
プロトコルバージョンの更新とキャンセルキー⻑の変更
パーティション表の UNLOGGED サポートの削除

7

プロトコルバージョンの更新とキャンセルキー⻑の変更
3.0 : PostgreSQL 7.4 で追加、 PostgreSQL 18 でも利⽤可能

キャンセルキー (クエリーをキャンセルするのに必要なキー) の⻑さは 4byte 固定
総当たりにより特定される可能性があるとの懸念

3.2 : PostgreSQL 18 で追加

⻑いキャンセルキー (最⼤ 256byte) 対応
3.1 は PgBouncer が 3.1 を 3.0 として扱っていたため skip

PostgreSQL(libpq) 18 は デフォルトでプロトコルバージョン 3.0 を利⽤
https://www.postgresql.org/about/news/postgresql-18-released-3142/

libpq still uses version 3.0 by default while clients (e.g., drivers, poolers, proxies)
add support for the new protocol version. 8

pg gem と⻑いキャンセルキーの対応
pg gem 1.5.9 以下のバージョンは⻑いキャンセルキーに対応していない

PG::Connection#cancel が PG::Connection#backend_key の取得に失敗
pg gem 1.6.0 で PostgreSQL 17 のPQcancelBlocking と PQcancelStart 関数に対応

PG::Connection#backend_key の取得が不要に
https://github.com/ged/ruby-pg/pull/614

当時 v1.6.0.rc1 だったため、 1.6.0 をリリースしてほしいという issue
https://github.com/ged/ruby-pg/issues/639

1.6.0.rc2 Rails の CI が green なことを確認し、 1.6.0 をリリースしてもらう

9

Rails と⻑いキャンセルキーの対応
Rails は pg gem 1.1 以上、 2.0 未満に対応している gem "pg", "~> 1.1"

pg gem 1.5.9 以下のユーザーへの対応が必要

Rails の対応 : libpq が 18 以上かつ pg gem 1.6.0 未満で
ActiveRecord::ConnectionAdapters::DatabaseStatements#cancel_any_running

_query で PG::Connection#cancel を呼ばない

https://github.com/rails/rails/pull/55540

理由 : cancel_any_running_query は private メソッド

exec_rollback_db_transaction と exec_restart_db_transaction (いずれも
⾮公開 API) からのみ呼ばれる
クエリーがキャンセルされなくてもトランザクションはいずれロールバックされる10

Rails と⻑いキャンセルキーの対応
Rails 8.1.0 に⼊る予定、 Rails 8.0.3 で修正ずみ

Bug Fixes としての対応 (PostgreSQL 9.3 以上をサポートするということ)
Rails 7.2 へのバックポートはしない

新しい PostgreSQL バージョンの対応は Security Fixes ではない
個⼈的な推奨

PostgreSQL (libpq) 18 を使う場合は、 pg gem 1.6 以上 を利⽤
pg gem 1.6.0 以降は Linux でも fat gem(例 : 1.6.2-x86_64-linux)

1.6.2 では libpq 17.6 を同梱
fat gem であっても PostgreSQL client は必要
config.active_record.schema_format = :sql では pg_dump
dbconsole では psql が必要なため、同じ libpq を使いたい場合は non-fat gem

11

パーティション表の UNLOGGED サポートの削除
UNLOGGED : テーブルへの書き込み時に WAL(Write Ahead Log) を書かない

⾼速な書き込みとクラッシュセーフではないトレードオフ

Rails フレームワークのテストの⾼速化のため UNLOGGED テーブルを利⽤

https://github.com/rails/rails/pull/47499

PostgreSQL 18 はパーティション表に UNLOGGED を指定するとエラーになる

Rails フレームワークテストではパーティション表を LOGGED で作成するようにした

https://github.com/rails/rails/pull/53439

rails/rails#47499 が⼊った 7.1(7-1-stable ブランチ) に遡ってバックポート

12

バージョン互換性対応の pull request を PostgreSQL 正
式版リリース前にマージした (できた) 理由

PostgreSQL 18 RC 1 の動作を確認した上でマージしている
https://www.postgresql.org/about/news/postgresql-18-rc-1-released-3130/

パーティション表の UNLOGGED サポートの削除対応
仮に revert されても Rails フレームワークのユニットテスト内部の変更のみでユー
ザーに影響がない

Rails と⻑いキャンセルキーの対応
過去にリリースされた (変えられない) pg gem 1.5.9 以下の対応

13

Rails の PostgreSQL 18 データベース新機能対応
pg_stat_statements の変更
仮想⽣成列 (virtual generated columns)

14

pg_stat_statements の変更
pg_stat_statements とは
https://www.postgresql.jp/docs/17/pgstatstatements.html

pg_stat_statements モジュールは、サーバで実⾏されたすべての SQL ⽂のプラン
⽣成時と実⾏時の統計情報を記録する⼿段を提供します。

Kaigi on Rails 2024 "Rails の Pull requests のレビューの時に私が考えていること " で話
した 「 pg_stat_statements の " 汚染 " 」への改善が PostgreSQL 18 に⼊った

https://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=62d712ecf

Patch をテストしたりユースケースを pgsql-hackers メーリングリストに投稿した

リリースノートの Acknowledgments に名前が載る

https://www.postgresql.org/docs/current/release-18.html 15

Note : データベース固有 (specific) と⾮依存 (agnostic) の
両⽴

バランス

特定データベース固有機能であっても追加されることはある
遅延制約 (PostgreSQL のみ) など

複数のデータベースで類似した機能が存在する場合

Rails からは共通の API 、名称になるように努めている
例 : Rails 8.1 での Disabling index 対応

https://github.com/rails/rails/pull/54332

MySQL では Invisible Indexes, MariaDB では Ignored Indexes と呼ばれるもの

16

⽣成列 (generated columns) とは
https://www.postgresql.jp/docs/17/ddl-generated-columns.html

⽣成列は常に他の列から計算される特別な列です。 ですから、これは列におけるテ
ーブルに対するビューのようなものです。

Rails での⽣成列の例 (t.virtual)

create_table :users do |t|
 t.string :name
 t.virtual :name_upcased, type: :string, as: 'upper(name)', stored: true
end

17

データベースアダプタごとの⽣成列対応
MySQL 5.7.5+ and MariaDB 5.2.0+.

Rails 5.1
https://github.com/rails/rails/commit/65bf1c60053e727835e06392d27a2fb49
665484c

SQLite 3.31.0+
Rails 7.2
https://github.com/rails/rails/pull/49346

PostgreSQL 12+
Rails 7.0
https://github.com/rails/rails/pull/41856

18

PostgreSQL と⽣成列
PostgreSQL 12 では、格納⽣成列 (stored generated columns) のみ対応

他のカラムから演算した結果をディスクに保存する
演算は書き込み時に⾏われる

PostgreSQL 18 から、仮想⽣成列 (virtual generated columns) 対応追加
他のカラムから演算した結果をディスクに保存しない
演算は読み込み時に⾏われる
仮想⽣成列がデフォルト

MySQL/MariaDB, SQLite では仮想⽣成列がデータベースとしてのデフォルトの動作
オプションで格納⽣成列も利⽤可能

19

Rails 8.0 以下の PostgreSQL 12+ での⽣成列対応
格納⽣成列のみ対応

create_table :users do |t|
 t.string :name
 t.virtual :name_upcased, type: :string, as: 'upper(name)', stored: true
end

stored: true を必須とし、それ以外はArgumentError を raise していた

PostgreSQL currently does not support VIRTUAL (not persisted) generated columns.
Specify 'stored: true' option for '#{options[:column].name}'

https://github.com/rails/rails/pull/41856#issuecomment-920933731

20

PostgreSQL 18+ での⽣成列対応 (rails/rails#55142)
PostgreSQL 18 以上の場合に仮想⽣成列に対応

stored: false を指定可能 (Rails のデフォルトの動作)

create_table :users do |t|
 t.string :name
 t.virtual :lower_name, type: :string, as: "LOWER(name)", stored: false
 t.virtual :name_length, type: :integer, as: "LENGTH(name)"
end

https://github.com/rails/rails/pull/55142 で open 中
⼊る場合は main ブランチのみ (New Features として)

21

データベース新機能を利⽤する Rails の新機能
PostgreSQL 正式版リリース前は追加された機能の revert や変更の可能性を想定

仮想⽣成列、セキュリティや振る舞いなど PostgreSQL 開発コミュニティで議論

"pg18: Virtual generated columns are not (yet) safe when superuser selects from
them"
https://www.postgresql.org/message-
id/flat/156542c6fb54bfadf2e67bcb419749bba6e65149.camel%40j-
davis.com#993fe6ec9cf7bf2ab5ab7eb8c9fbc580

パッチが提供され、議論はおさまった

22

PostgreSQL 18 Released!
2025 年 9 ⽉ 25 ⽇に PostgreSQL 18 リリース
https://www.postgresql.org/docs/current/release-18.html#RELEASE-18-HIGHLIGHTS

Virtual generated columns that compute their values during read operations. This
is now the default for generated columns.

https://github.com/rails/rails/pull/55142 ?

23

Thank you for listening - enjoy PostgreSQL 18 with
Rails 8.1!

24

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26

