
もう並列実行は怖くない
コネクション枯渇解消のための実践的アプローチ

@katakyo
Kaigi on Rails 2025

1

01
自己紹介

2

片田 恭平 (katakyo)
プロダクト開発部 バックエンドエンジニア

23 卒でマイベストに新卒入社

現在は社内システムの AI ワークフローの開発、社内の AI 活用改善などして

います

kashiwa.rb によく出没します

●自己紹介

@katakyo_51

自作 PC/ ラーメン / サウナ

●趣味

自己紹介

3

月間利用者
数3,000

ユーザーの“選択”を
サポートするサービス

万人以
上

（ 2025 年 8 月時点）

4

選択に資するデータベースを作るために、ユーザーニーズや利用シーンに合わせて 各領域で専門性を持ったメンバーが徹底検
証を行い、唯一無二のデータベースを制作しています。

商品を自社で購入し、専門性を持ったメンバーが徹底検証

雨傘の検証。送風機を使って「耐風性」を比較 防水カメラの検証。プールを貸し切り、実際に潜って撮影 縦型洗濯機の検証。主要メーカー 7 社の中から人気 18 商品を購入して検証

ヘアアイロンの検証。全商品を実際に使用して違いを検証 チェーンソーの検証。片道 2 時間ほどかけて、山奥にこもって検証 電子レンジの検証。実際の使い勝手などをリアルに検証 5

今日持ち帰っていただけるもの

● Active Record のコネクションプールの仕組みと、それがなぜ枯渇するのかについて

● RDS の max_connections の数 , Active Record のコネクションプールのサイズ , Sidekiq のス
レッド数 といった複数プロセスと複数スレッドの並列処理のパラメータを見積もるための考え
方や手順

● コネクションの枯渇を未然に防ぐための方法

6

想定する聞き手

● バッチの並列処理の設計に困っている方

● Active Record のコネクションや並列実行の適切なパラメータ設定の考え
方を知りたい方

● これから並列実行を行おうとしている方

7

想定環境
バックエンド　 Ruby on Rails(8.0)
バッチ処理　 Rake タスク
非同期 Job 　 Sidekiq
インフラ　 AWS ECS, RDS
使用した gem Parallel

8

アジェンダ

1 自己紹介

今回並列実行を行った背景

並列実行時に起きたエラー

安全に並列処理を行うための方法

9

2

3

4

5 まとめ

02
今回並列実行を行った背景

10

11

マイベストでの事業課題

マイベストは、オールジャンルで商品 DB を
作成しています

扱う商品数は約 1000 万点で
今後も増え続けていきます

1 つの商品に複数のスペック情報を登
録していきます

マイベストでの事業課題

商品データやスペック情報の入力・チェック業務をほぼ全て手動で行っていた

ネットリサーチ
データ入力

ダブルチェック

12

時間と労力がとてもかかる

13

そこでゲームチェンジャー
として現れたのが

14

AI

15

マイベストでの事業課題

人間のチェックAI によるリサーチとデータ入力

人によるリサーチとデータ入力

AsIs

ToBe

AI によって商品情報の入力ができないかというプロジェクトが始動

16

AI ワークフロー

01
調査対象を

選定

02
Web検索

03
情報抽出

04
データ整形

05
ファクト
チェック

OpenAI や Gemini などの LLM を使って自動化

OpenAI や Gemini といった LLM の API を複数回実行し、仮説検証を進めていた

17

ある程度ワークフローの
仮説検証もできたので

プロダクトに組み込もうとなりました

18

19

AI ワークフローのシステム概要

1 日次バッチで AI ワークフローの実行 2 管理画面から AI ワークフローを実行

未入力の商品データを埋めるために
Rake タスクを ECS タスクとして定期実行

管理画面から特定のボタンを押したときに
Sidekiq で非同期 Job を実行

Amazon ECS

タスク実行 コンテナ起動
非同期 Job を実行

ただここで問題が

20

AI のワークフローは時間がかかる

21

AI ワークフローの課題

01
調査対象を

選定

02
Web検索

03
情報抽出

04
データ整形

05
ファクト
チェック

精度改善のため、 AI のステップを複数に増やしたため 1 商品あたりのリサーチが
約 2分近くかかるようになってしまった

22

AI ワークフローの課題

01
調査対象を

選定

02
Web検索

03
情報抽出

04
データ整形

05
ファクト
チェック

リサーチ対象商品が月に 120 万商品ほどあり、 1 日 3500 商品ほど捌けていたが、
1ヶ月でも周り切らない

23

非同期 Job での AI ワークフローの課題

スレッド数が少ないため、 Job が詰まって
しまった

当時の運用だと、 Sidekiq を 1 プロセスで
行っていた

24

25

外部 API の I/O がボトルネックだ
から、パフォーマンスチューニン

グしづらい ...

26

並列実行すれば、
なんとかなるのでは？

27

本当に大丈夫？

03
並列実行時に起きたエラー

28

29

Parallel gem について

Parallel gem を使うことで、 Ruby で並列化を手軽に実装することができる

3種類の並列化 (マルチプロセス、マルチスレッド、 Ractor) を引数で切り替えることが
可能

30

AI ワークフローのマルチスレッドを実装

今回の AI ワークフローは I/O バウンドがボトルネックなので、 1 プロセスの ECS タスクを
8 マルチスレッドで動かし高速化を目指した

31

バッチを実行してみる

32

コネクションプールが枯渇していることがあった

データベースのコネクションとは？

アプリケーションサーバー DB

アプリケーションサーバーは、データベースとやりとりする必要が生じるとアプリケーションサー
バーとデータベースサーバー間の専用通信チャネルである「コネクション」を確立します

1 コネクションを確立

2 データベース操作を実行

3 コネクションをクローズ

33

データベースのコネクションプールとは？

DB との接続・切断はコストが高い処理のため、 Active Record はあらかじめ一定数の接続を確保
しておき、必要に応じて使い回す「コネクションプール」という仕組みを持っています。

1 プールからコネクションを取得する

2 データベース操作を実行

3 コネクションをプールに戻す

コネクション確立前 すでにコネクションが確立済み 34

1 コネクションを確立

2 データベース操作を実行

3 コネクションをプールに保存

ActiveRecord におけるコネクションプールについて

Active Record は、データベースコネクションプールを Web プロセスやバックグラウンドプロセ ス
ごとに管理します

35
https://www.bigbinary.com/blog/understanding-active-record-connection-pooling

36

コネクションプールが枯渇した理由

Parallel ブロック内の関数で DB データの操作があったが、スレッド数に対してコネク
ションプールの数が適切に設定されていないことが原因でした

失敗したケース

スレッド数に対してコネクションプールのサイズが足りていないため、待機する秒数が
checkout_timeout を超えたため発生

37

・
・

・

DB

コネクションプール

スレッド 1

スレッド 2

スレッド 3

スレッド 4

スレッド 8

待機中のスレッド

適切なケース

1 つのスレッドで複数のデータベースコネクションは発生しないので、
DB のやり取りが発生する場合は、コネクションプールのサイズをスレッドと同数に合わせる

38

・
・

・

DB

コネクションプール

スレッド 1

スレッド 2

スレッド 3

スレッド 8

・
・

・

データベースのプールサイズの設定方法
ActiveRecord では、 database.yml でプールで保持するコネクションの最大数を設定できます

Rails ではプロセスごと (Puma) のプール数を連動するために RAILS_MAX_THREADS というデフォルト値
が用意されているが、こちらを 8 スレッドの場合は 8 にする

39

40

設定が甘かった
Sidekiq の時はちゃんと設定しよう

Sidekiq の並列処理と concurrency

concurrency の設定値が、 1 プロセス内で同時に動く
スレッドの数を決定します

41

各プロセスの
スレッド数の合計

個別のプロセスのスレッド数

42

AI ワークフローを Sidekiq で動かす

ワークフローの共通化クラスにおいて Sidekiq のスレッドを使いたい

先ほど Rake タスクでは 8 スレッドで設定した値を Sidekiq の Job ではスレッドのネストを
避けるため、この値を 1 に設定して実装しました。

新しいプロセスで Sidekiq を立ち上げてみる

sidekiq-ai-research という名前の新しいプロセ
スを立ち上げて既存の Job に影響が出ないよう
に試みた

試験的にプロセスを作成し、 Sidekiq のスレッド数
を 10 でこのプロセスのコネクションプールのサイ
ズを 10 と設定した

43

44

またコネクションプールが
枯渇してしまうケースが発生

Sidekiq でのコネクションプールが枯渇した原因

Sidekiq は起動時にプロセス自身がコネクションを 1 つ確保し
ます。そのため、実際にスレッドが使えるコネクションは設定
値より 1 つ少なくなります。

結果として、 sidekiq.yml の concurrency と database.yml の
pool の数を同じにすると、コネクションが 1 つ不足する事態に
陥ります。

45

並列処理を行うためのコネクションプールのサイズ

Batch の時

コネクションプールのサイズ = Batch内でのスレッド数

Sidekiq の時

コネクションプールのサイズ = Sidekiq のスレッド数 +1

46

05
安全に並列処理を行うための方法

47

安全に並列処理を行うための方法

1 パラメータ設定の考え方

コネクションプールを枯渇させないようにする工夫

パフォーマンス改善

48

2

3

パラメータ設定の考え方

49

DB と可能性のあるサービスを考えて悲観的に見積もる

max_connections の数を超えると Too Many Connections エラーによりアプリケーションのダウンタ
イムが発生する

DB の最大コネクション数は以下のように見積もる

● Web コネクション数 = ECS タスク数 ✕ Puma のワーカー数 コネクションプールのサイズ✕
● バッチのコネクション数 = ECS タスク数 コネクションプールのサイズ✕
● バックグラウンドコネクション数 = ECS タスク数 ✕ Sidekiq プロセス数 プロセスあたりのスレッ✕

ド数

● DB の最大コネクション数 =
Web コネクション数 + バッチのコネクション数 + バックグラウンドコネクション数

50

インフラ全体でのパラメータ見積もり

Amazon ECS

Amazon ECS

Amazon ECS

Batch

Sidekiq

アプリケーション

ECS タスク数 × puma の worker 数 ×
コネクションプールのサイズ

Batch の実行数 × コネクション
プールのサイズ

プロセスごとの (スレッド数 +1) の
合計

超えてはいけない値
max_connections

51

インフラ全体でのパラメータ見積もり

Amazon ECS

Amazon ECS

Amazon ECS

Batch

Sidekiq

アプリケーション

ECS タスク数 × puma の worker 数 ×
コネクションプールのサイズ

Batch の実行数 × コネクション
プールのサイズ

プロセスごとの (スレッド数 +1) の
合計

超えてはいけない値
max_connections

52

時間帯によって 45台 ~120台オートス
ケールしている

時間帯によって
Batch の実行プロセス数が
変わる

max_connections の値を確認する

使用している RDS のスペックごとに DB コネクションが可能な max_connections 数が異なる
db.r5.4xlarge (Writer) を使っていたため 4000 という値が max_connectios になります

53
https://docs.aws.amazon.com/ja_jp/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Performance.html

全体のコネクション数は RDS の max_connections の半分にする

● デプロイ時には、瞬間的に古いサービスと新しいサービスが一時的に共存するため、ECS のタ
スク量が 2倍になる可能性がある

● DB に接続している、全体のコネクション数の合計が、 RDS の max_connections の半分を超えな
いように設定します。

54

データベースのコネクションを確認

サービスによって ECS タスクのサーバー台数が変動するため、ピーク時のデータベースコネクショ
ンを計測

追加可能なデータベースコネクション数
= (max_connections / 2) - ピーク時のデータベースコネクション数

55

ワークフローの I/O の比率を測定

アプリケーションの I/O待ちの割合を各ワークフローの測定により 90% 以上あると算出しました。

アムダールの法則などから、現状のスレッド数を増やしても性能向上が鈍化する点を見極め、
CPU リソース効率が最も良い 8 スレッドを 1 プロセスあたりの最大値として採用し、それ以上実行し
たい場合はサーバー台数を増やして並行処理を行った

56

p: 並列化できる処理の割合
N: 並列実行に利用するプロセッサ（スレッド）の数
(1 - p): 逐次実行（並列化できない）が必要な処理の割合

Sidekiq の公式推奨の concurrency の上限

Sidekiq の 1 プロセスでの concurrency は 50 以下で推奨されています
50 を超える場合はプロセスを増やす

57
https://github.com/sidekiq/sidekiq/wiki/Advanced-Options

正しくコネクションプールが設定されているかログを仕込む

ActiveRecord::Base.connection_pool.stat などでコネクションプールのサイズや、現在のコ
ネクション数などを可視化してデプロイ時に設定が意図通りか確認

58

コネクションプールを
枯渇させないようにする工夫

59

アプリケーションのコードでもコネクションを意識

バッチの中で DB のコネクションが発生する箇
所と外部 API との通信を意識

DB の読み取り

DB の書き込み

外部 API の通信

60

ActiveRecord::Base.connection_pool.with_connection とは

DB コネクションプールから接続を「一時的に借りて、ブ
ロック終了時に必ず返却」するための安全なラッパー

メリット
スレッドや並列処理下でも接続リークを防ぎ、
ConnectionTimeout の発生確率を下げる。

デメリット
コネクションプールの checkout/checkin の頻発でスルー
プットが下がることがある

61

ActiveRecord::Base.connection_pool.with_connection とは

外部 API の通信時に with_connection ブロッ
クを閉じてコネクションを開放することにより、
コネクションを占有し続けないようにする

コネクションが発生するブロックと、外部 API
の通信などの I/O を明確に分ける工夫をする

62

パフォーマンス改善

63

Web アプリケーションでは、 データベースへのコネクションが多数 発生するため
このような状況で、データの整合性を保つためにトランザクションは不可欠

トランザクションを長時間張るとテーブルロックの可能性が発生し、
ActiveRecord::LockWaitTimeout エラーやコネクションを占有し続けてパフォーマン ス
が悪化する原因となります。

64

長時間のトランザクションに気をつける

● 範囲を最小限に
本当に一貫性が求められる、必要最低限の DB操作のみをトランザクションで囲みます。

● 重い処理は外に出す
外部 API の呼び出しや、時間のかかる計算などはトランザクションの外で実行させる

● ロックの粒度を意識する
不必要にテーブル全体をロックしないよう、更新範囲を限定するなどの工夫をする。

65

トランザクションに気をつける

パフォーマンスを意識するために

ワークフロー全体の処理を rack-lineprof の gem を使った調査を開発にテストとして行った
例として、各ワークフローのトランザクションを貼っているメソッドやクラスを行単位でプロファイリ
ングするようにした

66
https://nishinatoshiharu.com/usage-rack-lineprof/

プロファイリングによって検知できた例

● N+1 や非効率なクエリ処理の検知

● トランザクション時に S3への画像の upload の同期処理

67

プロファイリングによって検知できた例

● N+1 や非効率なクエリ処理の検知
→パフォーマンスチューニング

● トランザクション時に S3への画像の upload の同期処理
S3→ への画像の upload 処理とレコードの保存処理を分離し、 S3への画像の upload を

非同期処理に修正

68

● 環境変数の設定の見直しと適切なパラメータ見積もり

● ワークフロー内での DB コネクションが発生するブロックと I/O の完全分離に
よるコネクション管理

● トランザクション内などで不要な I/O や N+1 などが起きていないか、行単位
でプロファイリングして確認

69

安全に並列処理を行うためやったこと

70

実際に追加したプロセス

1 日次バッチで AI ワークフローの実行 2 管理画面から AI ワークフローを実行

ECS タスクを 15台で 8 スレッドの並列処理を組
み合わせた並行処理

別プロセスを立ち上げて非同期の 50 並列処理
を実行

Amazon ECS

タスク実行 コンテナ起動
非同期 Job を実行

・ 120 並列で問題なく、バッチを完了
!5台のサーバーで 8 スレッドの処理で
リサーチ件数が 3500 商品 / 日→ 45 万商品 / 日に！

・ Sidekiq も 50 並列で他の Job に影響を与えることなく、高速化を
実現

71

結果

06
まとめ

72

● 並列実行するときはコネクションプールを意識してパラメータを設定
しましょう

● コネクション枯渇を防ぐために、 DB コネクションが発生する処理と
I/O の処理を分けてコネクションプールに余裕が出るようにしましょう

● LLM の API など I/O がボトルネックの時は並列化を検討してみましょ
う

73

まとめ

74

https://connpass.com/event/370180/

After イベントを 3 社合同でやります！

75

https://connpass.com/event/370180/

LT 枠もぜひ募集していますのでよかったらご参加ください！

ご清聴ありがとうございました

76

● https://www.bigbinary.com/blog/tuning-puma-max-threads-configuration-with-gvl-instrumentation
● https://techracho.bpsinc.jp/hachi8833/2025_07_01/151299

● https://www.bigbinary.com/blog/understanding-active-record-connection-pooling

● https://techracho.bpsinc.jp/hachi8833/2025_07_16/151486
● https://qiita.com/HrsUed/items/6a103322bf4e67e9054c
● https://nishinatoshiharu.com/usage-rack-lineprof/
● https://speakerdeck.com/andpad/yasasiiactiverecordnodbjie-sok-nosikumi

参考文献

77

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79

