
避けられない I/O 待ちに対処する : 
Rails アプリにおける SSE と async gem の活用

Tackling Inevitable I/O Latency in Rails Apps with SSE and the async gem





2

@moznion @moznion

SmartBank, Inc.  

Software Engineer

Taiki Kawakami 
@moznion



X



SSE: server-sent events

4



5

SSE とは

一度クライアント - サーバー間で
HTTP の SSE コネクションを張ると、 
サーバーからクライアントに対して
継続的にデータを送出できる仕組み 

ざっくり言うと

伝統的には、ウェブページが新たなデータを受け取るために、
サーバーにリクエストを送信しなければなりません。すなわち、
ページがサーバーからデータを要求します。サーバー送信イベン
トによって、サーバーがウェブページにメッセージをプッシュ送
信することにより、サーバーからウェブページへ新たなデータを
いつでも送信することができます。 
https://developer.mozilla.org/ja/docs/Web/API/Server-
sent̲ events

”

通常の HTTP SSE



6

どのような状況で SSE は有効か

‣ ニュースのアップデート ( 速報 ) 

‣ ログのストリーミング表示 

‣ メッセージング・チャット 

‣ KoR のサブスクリーン †  

‣ 長時間かかる処理の… 

‣ 進捗表示 

‣ 完了通知

例 :

ChatGPT↑ も SSE で動作しているという例

†: https://github.com/kaigionrails/shirataki



7

どのような状況で SSE は有効か

例 :

ChatGPT↑ も SSE で動作しているという例

‣ ニュースのアップデート ( 速報 ) 

‣ ログのストリーミング表示 

‣ メッセージング・チャット 

‣ KoR のサブスクリーン †  

‣ 長時間かかる処理の… 

‣ 進捗表示 

‣ 完了通知

†: https://github.com/kaigionrails/shirataki



8

SSE  ⇒ ユーザー体験向上施策の一種



9

ユーザー体験向上施策の一種

昨今のアプリだとよくある 

‣ API/RPC 呼び出し 

‣ AI (LLM) 推論 
右図はワンバンクアプリの「 AI スクショ読み取り機能」

例 : 長い待ち時間 (e.g., I/O wait) が発生する処理の進捗

スクショ画像を OCR して LLM が情報抽出する機能



10

ユーザー体験向上施策の一種

昨今のアプリだとよくある 

‣ API/RPC 呼び出し 

‣ AI (LLM) 推論 
右図はワンバンクアプリの「 AI スクショ読み取り機能」

例 : 長い待ち時間 (e.g., I/O wait) が発生する処理の進捗

スクショ画像を OCR して LLM が情報抽出する機能

ここに時間がかかる



11

ユーザー体験向上施策の一種

昨今のアプリだとよくある 

‣ API/RPC 呼び出し 

‣ AI (LLM) 推論 
右図はワンバンクアプリの「 AI スクショ読み取り機能」

例 : 長い待ち時間 (e.g., I/O wait) が発生する処理の進捗

スクショ画像を OCR して LLM が情報抽出する機能

この一連の処理を SSE にして進捗を表示する



12

ユーザー体験向上施策の一種

‣ このような「待ち」に関する最適化の余地は限定されている 

‣ 「呼出先」の性能を良くすることは困難な場合が多い 

‣ しかしユーザー体験は良くしたい 

‣ SSE はそのための選択肢のひとつになりえる

例 : 長い待ち時間 (e.g., I/O wait) が発生する処理の進捗



Rails で SSE Response を返却するには？

13



14

Rails で SSE Response を返却する方法

出展 : https://api.rubyonrails.org/classes/ActionController/Live/SSE.html

Example:



簡単ですね





17

背後ではどのようなことが起こっているのか



18

SSE 仕様ことはじめ

以下が標準仕様👇 
https://html.spec.whatwg.org/multipage/server-sent-events.html



19

SSE 仕様ことはじめ

‣ 基本的に HTTP 1.1 をベースとした ”メッセージングフォーマット” 
‣ WebSocket と比較してシンプルな仕組みになっている 
‣ WebSocket によるもろもろの課題が HTTP 1.1 をベースにすることで

解決されている 
‣ 一方 SSE はサーバーからデータが一方的にプッシュされてくる仕組み 

WebSocket のような 1 コネクションでの双方向性は無い



20

SSE プロトコルことはじめ



21

SSE 接続確立フェイズ



22

SSE 接続確立フェイズ

‣ Client: SSE のエンドポイントへ HTTP 
リクエストする 

‣ Client ライブラリは内部的に SSE 接続 
のステート管理を行う 

‣ Server: 通常のレスポンスとして 
̀text/event-stream̀ を返却して 
SSE 接続を確立

< HTTP/1.1 200 OK 
< cache-control: no-store 
< content-type: text/event-
stream 
< x-accel-buffering: no 
< Transfer-Encoding: chunked



23

イベントストリーム処理



24

イベントストリーム処理

‣ ストリームの文字列は UTF-8 

‣ 行指向のメッセージフォーマット 

‣ 空行区切り (̀\ǹ or ̀\r\ǹ)

data: first event 
id: 1 

data: second event 
id 

data: third event 

Example:



25

イベントストリーム処理

行の種別は以下の通り 

   行が空白 ( 空白行 ) 

‣ デリミタとして扱い、イベントを処理する 

   行がコロンから始まっている 

‣ 無視される ( ハートビートに便利 ) 
   行にコロンが含まれている場合 

‣ コロンによる Key (Field) と Value として
扱う ( 後述 ) 

   それ以外 

‣ 行全体を Field として空文字を Value とし
て扱う



26

イベントストリーム処理

‣ 許可される Field は以下 ( 他は無視される ) 

‣ event: 任意のイベントタイプ 

‣ data: 任意のデータ 

‣ id: 一意な ID 

‣ ̀Last-Event-ID̀ で再接続時の 
再開ポイントとして使われる 

‣ retry: 再接続時間 ( ミリ秒 ) 

その他の細かなルールは仕様を参照されたい



27

イベントストリーム処理

例 :

: test stream 

data: first event 
id: 1 

data: second event 
id 

data: third event 

コロンからはじまるメッセージは無視される 
このブロックでは何も発生しない



28

イベントストリーム処理

例 :

: test stream 

data: first event 
id: 1 

data: second event 
id 

data: third event 

data が "first event" 
id が "1" 
としてブロックが処理される



29

イベントストリーム処理

例 :

: test stream 

data: first event 
id: 1 

data: second event 
id 

data: third event 

data が "second event" 
id が空文字列 (unset) 
としてブロックが処理される



30

イベントストリーム処理

例 :

: test stream 

data: first event 
id: 1 

data: second event 
id 

data: third event 

data が "third event" 
としてイベントブロックが処理される 
空行で終端されていないとイベントが発火しない



31

イベントストリーム処理

‣ クライアントは空行をデリミタとした 
イベントブロックを 1 つの単位として 
処理する 

‣ data が複数ある場合は改行 ̀ \ǹ で 
連結されて渡される

data: uno 
data: dos 
data: tres 



32

イベントストリーム処理

‣ クライアントは空行をデリミタとした 
イベントブロックを 1 つの単位として 
処理する 

‣ data が複数ある場合は改行 ̀ \ǹ で 
連結されて渡される

data: uno 
data: dos 
data: tres 

ここにはブロック内のデータが ̀ uno\ndos\ntres̀  として来る



33

イベントストリーム処理

‣ クライアントは逐次来る event, data, id
を処理して所望の機能を実現する 

‣ 実用例 : data に JSON が入ってくるので
クライアントはそれを都度レンダリング
する 

‣ retry は基本的にはクライアントライブラ
リがケアする



34

接続終了処理



35

接続終了処理

‣ クライアントから明示的に SSE 接続を 
close する 

‣ 例 : ̀eventSource.close()̀ 

‣ サーバーから SSE 接続を close する 

‣ 例 : ̀sse.closè 

‣ 適確に close されなかった場合は 
クライアントから再接続が行なわれる



36

基本的にクライアントライブラリはこのへんをよしなにやってくれる

‣ ブラウザにはもう実装が存在している 

‣ ̀EventSourcè インターフェイス 

‣ Native App用のクライアントも複数ある
出展 : https://developer.mozilla.org/en-US/docs/Web/API/EventSource



SSE と非同期処理は相性が良さそうに思いませんか

37



38

SSE と非同期処理の相性

サンプルシナリオ :  
サーバー側で非同期で重い処理を並列化し、その進捗をクライアントに知らせる

1. リクエスト

2. SSE 接続確立

3. 並列処理 ( 例 : LLM 推論 )

...4. 進捗報告

5. 完了通知 w/closeClient Server LLM



39

SSE と非同期処理の相性

サンプルシナリオ :  
サーバー側で非同期で重い処理を並列化し、その進捗をクライアントに知らせる

👉 I/O 待ちのような時間のかかる処理には一般に非同期処理が有効
SSE による表面的な体験の改善に加え 

非同期処理による本質的なパフォーマンスの改善が見込める

1. リクエスト

2. SSE 接続確立

3. 並列処理 ( 例 : LLM 推論 )

...4. 進捗報告

5. 完了通知 w/closeClient Server LLM



40

async gem



41

async gem

socketry/async 

 

       Async is a composable asynchronous I/O  
       framework for Ruby based on io-event. 

    Fiber をベースとしたイベントドリブン I/O を提供 

    (個人的には純粋に書き味が良く、好み )

”



42

async gem

Thread 

‣ GVL の影響を受けるが、 I/O 待ちなどは並列化できる 

‣ メモリリソースを食う : 大量に spawn できない 
Fiber 

‣ 協調的 ( イベントループとノンブロッキング I/O) 

‣ メモリリソースに対する優位性がある 

‣ CPU バウンドな処理は並列化できない 

‣ ブロッキング処理が入ると全体をブロックする 

‣ 関連するコンポーネントが非同期 I/O ・ Fiber 
aware である必要がある



43

async gem

Thread 

‣ GVL の影響を受けるが、 I/O 待ちなどは並列化できる 

‣ メモリリソースを食う : 大量に spawn できない 
Fiber 

‣ 協調的 ( イベントループとノンブロッキング I/O) 

‣ メモリリソースに対する優位性がある 

‣ CPU バウンドな処理は並列化できない 

‣ ブロッキング処理が入ると全体をブロックする 

‣ 関連するコンポーネントが非同期 I/O ・ Fiber 
aware である必要がある

I/O 待ち過多な 
タイプのアプリ 
では Thread より 
スケールする 
( 可能性が高い )



SSE と組み合わせた実装パターン



45

SSE と組み合わせた実装パターン

Async::Queue との相性が良さそう

‣ ̀#start̀  でタスクを並列処理 

‣ 完了したら SSE のメッセージを 
Async::Queue に enqueue 

‣ ̀#next̀  で SSE メッセージを 
queue から取得 



46

SSE と組み合わせた実装パターン

こんな感じでイテレータ的に 
扱うというパターン



47

Async タスクの同時実行数制限

Barrier と Semaphore を 
組み合わせると良い

‣ Semaphore に最大並列実行数と 
Barrier を与える 

‣ ̀Semaphore#async̀  の中で 
処理すると実行数を制限できる 

‣ ̀Barrier#wait̀  で完了待ち 
 
well-documented で最高 
‣ https://socketry.github.io/async/guides/tasks/index.html#combining-a-barrier-with-a-semaphore 

‣ https://socketry.github.io/async/guides/best-practices/index.html#use-a-top-level-sync-to-denote-the-root-of-your-program



48

Async タスクのタイムアウト設定

̀Task#with̲ timeout̀  を使うと良い

‣ タイムアウトしうる処理を 
コードブロックで与える 

‣ タイムアウトしたら 
̀Async::TimeoutError̀  が上がる 

 
well-documented で最高 
‣ https://socketry.github.io/async/guides/tasks/index.html#timeouts 

‣ https://socketry.github.io/async/guides/best-practices/index.html#use-a-top-level-sync-to-denote-the-root-of-your-program



49

SSE と組み合わせた実装パターン ( イレギュラー )

async task 内から Active Record (mysql2) のコネクションを borrow すると、 
動作中の Thread 内のコネクションを借用することになる。 

借りてきた ( 単一 Thread に割り当てられた ) コネクションを Fiber横断で 
使い回すとリソース競合が発生してクラッシュしてしまう。

上記のようにスレッドプールとコネクションプールを併用し、 
spawn された 1 Thread が 1DB コネクションを適切に取得する wrapper を使うことで、 
async task 内から DB を並行に触れるような解決を試みた。 

他に何か良いアイデアがあれば知りたい…… (Thread を作ると Fiber の良さが減るので )



50

async には SSE と組み合わせて使うための 
機能が全部揃っていてすばらしい



すべてが解決 
めでたしめでたし



と思いきや実動までは様々なブロッカーがある 
 ( あった )

52



53

ブロッカー色々 : レスポンスヘッダの調整

‣ 標準仕様では ̀ Cache-Control: no-storè を付けよ、というふうに書いてある 

‣ MDN のドキュメントでは ̀ Cache-Control: no-cachè を付けている 

‣ どっちやねん (no-cache で良さそうだが…… ) 

‣ React のプロキシを通すと SSE (Server-sent events) のレスポンスを受け取れない 
#React - Qiita を参考にすると ̀ no-transform̀  を付けたほうが良さそうに見える 

‣ なので ̀ Cache-Control: no-cache, no-transform̀  を付与することで動かしている



54

ブロッカー色々 : レスポンスヘッダの調整

‣ リバースプロキシのバッファリングを抑制するために ̀ X-Accel-Buffering: nò も 
設定しておく 

‣ このあたりの調整はリバースプロキシの設定と同期を取る必要あり 

‣ 実例 : 
< HTTP/1.1 200 OK 
< cache-control: no-cache, no-transform 
< content-type: text/event-stream 
< x-accel-buffering: no 
< Transfer-Encoding: chunked



55

ブロッカー色々 : リバースプロキシの設定

例 : nginx.conf 

‣ location に右のような設定を付与する 

‣ 前掲のレスポンスヘッダと重複する箇所はあるが…… 

‣ プロトコル的な特性から SSE については HTTP のバージョンを 1.1 に固定して 
おくほうが安全 

‣ リバースプロキシが多段であった場合は経路すべての設定をする必要がある 

‣ 一部のリバースプロキシで設定が漏れていて動かなかった経験あり (1敗 )

余談 : リバースプロキスの設定等により無通信状態が続くとコネクションが切られることがあるので SSE 上でハートビートを送る必要がある場合がある



56

ブロッカー色々 : 便利な ActionController::Live だが……

̀include ActionController::Livè したコントローラーで ̀ application/jsoǹ 
のような content-type が「普通な」レスポンスを返却しようとすると刺さる 

‣ Action 内で「 SSE のような streaming 」を返却する時はコード内で明示的に 
̀closè してリソースを返却するチャンスがある 

‣ 一方、普通のリソースを普通に返却する (e.g. ̀render json ...̀) と 
̀closè が呼ばれる機会が無いためリソースが取られっぱなしに 

      👉 puma thread が busy になってアプリケーション全体がストールする 

⇒ 従って SSE とそれ以外とで Controller Class を分ける必要がある 
    (Rails 的にちょっと微妙な見た目に……？ )



57

committee gem の Response Body Validation Middleware を使うと刺さる 

‣ 正しく言うとレスポンスボディを全部返し終えるまでミドルウェアでバッファして 
しまうのでストリーミング処理にならない 

‣ puma thread が busy になってアプリケーション全体がストールする ( 再登場 ) 

‣ 詳細は過去の資料 : Committee::Middleware::ResponseValidation で Streaming 
Response Body を処理すると刺さります

ブロッカー色々 : committee gem



58

アッ 

https://github.com/interagent/committee/blob/cf8c0f268ec0c67117461aca3c9cd2fca8549b03/lib/committee/schema̲ validator/open̲ api̲ 3.rb

過去スライドから引用



59

‣ committee に限らずレスポンスボディ全体をバッファするようなミドルウェアでは 
同様の問題が発生する可能性がある 

‣ サーバー側だけではなくクライアント側でも起こる可能性があるので注意 

‣ 例 : Android の HttpLoggingInterceptor

ブロッカー色々 : committee gem



60

OpenAPI と SSE の相性があまり良くない 

‣ OpenAPI が RESTful な API 定義を記述することを主眼としているため 
Streaming な SSE との相性があまり良くない 

‣ クライアントの自動生成は今ある一般的なツールでは困難

ブロッカー色々 : OpenAPI 3



SSE でハマった時のトラブルシューティング



62

SSE でハマった時のトラブルシューティング

リクエストヘッダとレスポンスヘッダを真っ先に見る 

‣ ヘッダが違っていると基本的には正常に動かない 

‣ ( たまに実装依存でうっかり動いたりしてしまうことがあるが…… )



63

SSE でハマった時のトラブルシューティング

‣ リクエストとレスポンスが通る経路すべてをチェックする 

‣ 例えばリバースプロキシがあるのにアプリサーバーとだけ疎通試験しても意味が無い 



64

SSE でハマった時のトラブルシューティング

‣ リクエストとレスポンスが通る経路すべてをチェックする 

‣ 例えばリバースプロキシがあるのにアプリサーバーとだけ疎通試験しても意味が無い 

‣ (経験上 ) AWS の ALB は原因にならない



65

SSE でハマった時のトラブルシューティング

‣ リクエストとレスポンスが通る経路すべてをチェックする 

‣ 例えばリバースプロキシがあるのにアプリサーバーとだけ疎通試験しても意味が無い 

‣ (経験上 ) AWS の ALB は原因にならない

ごめんよ……



66

SSE でハマった時のトラブルシューティング

‣ チャンクサイズで切られて SSE のコンテンツは送られてくることに留意する 

‣ SSE のイベントブロック単位で送られてくるわけではなく、 
pumaや nginx等で設定されるチャンクサイズに従って送られてくる 

‣ クライアントはレスポンスボディをストリーミングで受け取り、 
それをバッファしていきながらデリミタが来た時に 
SSE の 1 イベントブロックとして parse する必要がある



67

SSE でハマった時のトラブルシューティング

‣ tcpdump (パケットキャプチャ ) を見られるのが一番良い 

‣ いろいろと面倒であるのはそう 

‣ Amazon ECS のようなコンテナ環境に差し込む方法 

‣ TLS に阻まれる



ブロッカーを取り除いていく取り組み

68



69

ブロッカー色々 : 便利な ActionController::Live だが……

̀include ActionController::Livè したコントローラーで ̀ application/jsoǹ 
のような content-type が「普通な」レスポンスを返却しようとすると刺さる 

‣ puma thread が busy になってアプリケーション全体がストールする



70

ブロッカー色々 : 便利な ActionController::Live だが……

̀include ActionController::Livè したコントローラーで ̀ application/jsoǹ 
のような content-type が「普通な」レスポンスを返却しようとすると刺さる 

‣ puma thread が busy になってアプリケーション全体がストールする

https://github.com/rails/rails/pull/55763



71

committee gem の Response Body Validation Middleware を使うと刺さる 

‣ 正しく言うとレスポンスボディを全部返し終えるまでミドルウェアでバッファして 
しまうのでストリーミング処理にならない 

‣ puma thread が busy になってアプリケーション全体がストールする ( 再登場 )

ブロッカー色々 : committee gem



72

committee gem の Response Body Validation Middleware を使うと刺さる 

‣ 正しく言うとレスポンスボディを全部返し終えるまでミドルウェアでバッファして 
しまうのでストリーミング処理にならない 

‣ puma thread が busy になってアプリケーション全体がストールする ( 再登場 )

https://github.com/interagent/committee/pull/447

ブロッカー色々 : committee gem



73

ブロッカー色々 : committee gem

Usage Example:

内部実装 ( 簡略 ):
if streaming_response?(headers) 
  response = Rack::BodyProxy.new(response) do 
    begin 
      validate(request, status, headers, response) 
    rescue %=> e 
      handle_exception(e, request.env) 

      raise e if @raise 
    end 
  end 
else

内部的に Rack::BodyProxy を使用 

詳しくは Pull Request を参照のこと



74

ブロッカー色々 : OpenAPI 3

‣ OpenAPI と SSE の相性があまり良くない 

‣ OpenAPI が RESTful な API 定義を記述することを主眼としているため 
Streaming な SSE との相性があまり良くない 

‣ クライアントの自動生成は今ある一般的なツールでは困難



75

ブロッカー色々 : OpenAPI 3

‣ OpenAPI と SSE の相性があまり良くない 

‣ OpenAPI が RESTful な API 定義を記述することを主眼としているため 
Streaming な SSE との相性があまり良くない 

‣ クライアントの自動生成は今ある一般的なツールでは困難

https://github.com/OAI/OpenAPI-Specification/discussions/4171



76

ブロッカー色々 : OpenAPI 3

‣ OpenAPI と SSE の相性があまり良くない 

‣ OpenAPI が RESTful な API 定義を記述することを主眼としているため 
Streaming な SSE との相性があまり良くない 

‣ クライアントの自動生成は今ある一般的なツールでは困難

https://github.com/OAI/OpenAPI-Specification/discussions/4171

?



77

ブロッカー色々 : OpenAPI 3

‣ OpenAPI と SSE の相性があまり良くない 

‣ OpenAPI が RESTful な API 定義を記述することを主眼としているため 
Streaming な SSE との相性があまり良くない 

‣ クライアントの自動生成は今ある一般的なツールでは困難

!!

https://github.com/OAI/OpenAPI-Specification/discussions/4171



78

ブロッカー色々 : OpenAPI 3

‣ OpenAPI 3.2 から ̀ Sequential Media Types̀  
が導入される 

‣ e.g., ̀application/jsonl̀ , ̀text/event-stream̀  

‣ Sequential Media Types の各アイテムのスキーマを 
̀itemSchemà で定義できるようになる

参照 : https://spec.openapis.org/oas/v3.2.0.html



79

ブロッカーではないが便利にしていく取り組み



80

async gem のフック : unhandled な例外をハンドルする

https://github.com/socketry/async/pull/389



81

rspec-sse-matchers

SSE 関連のテストを書きやすくするための rspec matcher



82

rspec-sse-matchers

Example:



SSE周りは今でも十分にサポートされている ( ありがたい ) 
一方で使ってみるともっと便利にできる箇所があることに気付く



84

(SSE に限らず ) 
そのような事柄に出くわした時には 

コミュニティに還元できると良いですね



85

コミュニティを育てるのは利用者



まとめ

86



87

まとめ

‣ SSE について説明しました 

‣ SSE の有効な用途について説明しました 

‣ SSE と async を組み合わせた非同期処理による恩恵・実装パターンを説明しました 

‣ エコシステムを便利にできるチャンスを見付けたらどしどし貢献していきましょう





参考情報



90

参考情報

‣ HTML Standard - 9.2 Server-sent events 
https://html.spec.whatwg.org/multipage/server-sent-events.html 

‣ Server-sent events - Web APIs | MDN 
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent̲ events


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91

