
非同期処理実行基盤

Delayed 脱出 → Solid Queue 完全移行への旅路。

Kaigi on Rails 2025
2025/9/27
小林翔平 @srockstyle

KONNICHIWA, Ìm Shohei Kobayashi@srockstyle

https://www.srockstyle.com/

github.com/srockstyle

@srockstyle.com

@srockstyle

苗字で呼ばれると返事できない体になっているので、
しょーへーさん or すろっくさんって呼んでください

Site Reliability Engineer
in Platform Engineering Unit at Studist

KONNICHIWA, Ìm Shohei Kobayashi@srockstyle

Site Reliability Engineer
in Platform Engineering Unit at Studist

KONNICHIWA, Ìm Shohei Kobayashi@srockstyle

Site Reliability Engineer
in Platform Engineering Unit at Studist

Engineer history 2005 〜

KONNICHIWA, Ìm Shohei Kobayashi@srockstyle

Site Reliability Engineer
in Platform Engineering Unit at Studist

Rails3 〜

Engineer history 2005 〜

KONNICHIWA, Ìm Shohei Kobayashi@srockstyle

Site Reliability Engineer
in Platform Engineering Unit at Studist

Rails3 〜

Vine Linux 2.0 〜
Fedora Core 1 〜

Engineer history 2005 〜

KONNICHIWA, Ìm Shohei Kobayashi@srockstyle

Site Reliability Engineer
in Platform Engineering Unit at Studist

Rails3 〜

Vine Linux 2.0 〜
Fedora Core 1 〜

Engineer history 2005 〜

Web2.0 ！

イラスト描いたりしてます
東方 Project 好きだぜ
社内のプレゼン資料に使って同僚にドヤ顔するのが趣味

Delayed → Solid Queue 完全移行への旅路。

Kaigi on Rails2025
September 27th,2025

and all the things in between

https://note.com/studist/n/nb16a0b57bbdf https://studist.tech/delayed-job-to-solidqueue-migration-fd50ad239a07

アジェンダ

• はじめに： Teachme Biz について
• 課題 Part その 1
• 選定
• 設計と実装そして移行
• 課題 Part その 2
• まとめ

• はじめに： Teachme Biz について
• 課題 Part その 1
• 選定
• 設計と実装そして移行
• 課題 Part その 2
• まとめ

リリース 10 年以上の Rails アプリケーション

リリース 10 年以上の Rails アプリケーション

2012 年リリース Rails3.2.1

リリース 10 年以上の Rails アプリケーション

2012 年リリース Rails3.2.1 -> 2024 年 10 月当時 Rails7.1

Web Pod Delayed Pod

非同期処理の簡単なおさらい

Web Pod Delayed Pod

非同期処理の簡単なおさらい

1. ユーザが操作する

Web Pod Delayed Pod

非同期処理の簡単なおさらい

1. ユーザが操作する

2. DB に処理がエンキューされる

Web Pod Delayed Pod

非同期処理の簡単なおさらい

1. ユーザが操作する

2. DB に処理がエンキューされる

3. ユーザにレスポンスが返される

Web Pod Delayed Pod

非同期処理の簡単なおさらい

1. ユーザが操作する

2. DB に処理がエンキューされる

3. ユーザにレスポンスが返される

4. 非同期バックエンドが処理

Web Pod Delayed Pod

非同期処理の簡単なおさらい

1. ユーザが操作する

2. DB に処理がエンキューされる

3. ユーザにレスポンスが返される

4. 非同期バックエンドが処理

5. 処理結果を DB に保存して完了

重要な処理＝非同期処理が多い

初期マニュアル作成

Chatbot で Chat 開始

フォルダの人数計算

各種情報更新後メール送信

顧客情報削除処理

AI を使った自動生成

動画・ PDF からマニュアル作成

非同期処理基盤

• はじめに： Teachme Biz について
• 課題 Part その 1
• 選定
• 設計と実装そして移行
• 課題 Part その 2
• まとめ

7 years ago...

DelayedJob / Delayed

DB をキューとする非同期バックエンド

課題とやりたいこと

課題とやりたいこと
パフォーマンスとスケーラビリティの向上

柔軟なジョブ管理と優先制御

開発と運用の効率化

課題とやりたいこと
パフォーマンスとスケーラビリティの向上

柔軟なジョブ管理と優先制御

開発と運用の効率化

⬜ 綺麗に線形にスケールアウトできるようにしたい

課題とやりたいこと
パフォーマンスとスケーラビリティの向上

柔軟なジョブ管理と優先制御

開発と運用の効率化

⬜ 綺麗に線形にスケールアウトできるようにしたい

⬜ 処理できるジョブの数を増やしたい

課題とやりたいこと
パフォーマンスとスケーラビリティの向上

柔軟なジョブ管理と優先制御

開発と運用の効率化

⬜ 綺麗に線形にスケールアウトできるようにしたい

⬜ 処理できるジョブの数を増やしたい
⬜ リソースを有効活用したい

課題とやりたいこと
パフォーマンスとスケーラビリティの向上

柔軟なジョブ管理と優先制御

開発と運用の効率化

⬜ 綺麗に線形にスケールアウトできるようにしたい

⬜ 処理できるジョブの数を増やしたい
⬜ リソースを有効活用したい

⬜ 優先度を定義したら優先度を守ってほしい

課題とやりたいこと
パフォーマンスとスケーラビリティの向上

柔軟なジョブ管理と優先制御

開発と運用の効率化

⬜ 綺麗に線形にスケールアウトできるようにしたい

⬜ 処理できるジョブの数を増やしたい
⬜ リソースを有効活用したい

⬜ 優先度を定義したら優先度を守ってほしい
⬜ ジョブごとにキューと Worker を分けたい

課題とやりたいこと
パフォーマンスとスケーラビリティの向上

柔軟なジョブ管理と優先制御

開発と運用の効率化

⬜ 綺麗に線形にスケールアウトできるようにしたい

⬜ 処理できるジョブの数を増やしたい
⬜ リソースを有効活用したい

⬜ 優先度を定義したら優先度を守ってほしい
⬜ ジョブごとにキューと Worker を分けたい
⬜ 定期実行処理をまとめたい

課題とやりたいこと
パフォーマンスとスケーラビリティの向上

柔軟なジョブ管理と優先制御

開発と運用の効率化

⬜ 綺麗に線形にスケールアウトできるようにしたい

⬜ 処理できるジョブの数を増やしたい
⬜ リソースを有効活用したい

⬜ 優先度を定義したら優先度を守ってほしい
⬜ ジョブごとにキューと Worker を分けたい
⬜ 定期実行処理をまとめたい

⬜ ActiveJob に移行したい（ Delayed 専用の書き方と ActiveJob の混在廃止）

課題とやりたいこと
パフォーマンスとスケーラビリティの向上

柔軟なジョブ管理と優先制御

開発と運用の効率化

⬜ 綺麗に線形にスケールアウトできるようにしたい

⬜ 処理できるジョブの数を増やしたい
⬜ リソースを有効活用したい

⬜ 優先度を定義したら優先度を守ってほしい
⬜ ジョブごとにキューと Worker を分けたい
⬜ 定期実行処理をまとめたい

⬜ ActiveJob に移行したい（ Delayed 専用の書き方と ActiveJob の混在廃止）

⬜ できるだけ Rails Way に乗せたい

課題とやりたいこと
パフォーマンスとスケーラビリティの向上

柔軟なジョブ管理と優先制御

開発と運用の効率化

⬜ 綺麗に線形にスケールアウトできるようにしたい

⬜ 処理できるジョブの数を増やしたい
⬜ リソースを有効活用したい

⬜ 優先度を定義したら優先度を守ってほしい
⬜ ジョブごとにキューと Worker を分けたい
⬜ 定期実行処理をまとめたい

⬜ ActiveJob に移行したい（ Delayed 専用の書き方と ActiveJob の混在廃止）

⬜ できるだけ Rails Way に乗せたい

線形的なスケールアウト不可能問題 : 前提
非同期処理は二種類存在。

A: ジョブとして長時間の処理をしてもらうもの

線形的なスケールアウト不可能問題 : 前提
非同期処理は二種類存在。

例：初回グループ作成 / 解約グループ削除

A: ジョブとして長時間の処理をしてもらうもの

B: とりあえず非同期にするが、なる早で処理して欲しいもの

線形的なスケールアウト不可能問題 : 前提
非同期処理は二種類存在。

例：初回グループ作成 / 解約グループ削除

例：全従業員にメール通知 / Chatbot の返信 / AI で自動マニュアル作成

A: ジョブとして長時間の処理をしてもらうもの

B: とりあえず非同期にするが、なる早で処理して欲しいもの

線形的なスケールアウト不可能問題 : 前提
非同期処理は二種類存在。

例：初回グループ作成 / 解約グループ削除

例：全従業員にメール通知 / Chatbot の返信 / AI で自動マニュアル作成

線形的なスケールアウト不可能問題

本屋（ Web アプリケーション）

線形的なスケールアウト不可能問題

本屋（ Web アプリケーション）

本がたくさん売れるから

店員（処理プロセス）を 1 人から 2 人にしたよ！

線形的なスケールアウト不可能問題

本屋（ Web アプリケーション）

本がたくさん売れるから

店員（処理プロセス）を 1 人から 2 人にしたよ！

2 倍だ！
2 人にしたからお客さん（処理）を捌くスピードも

線形的なスケールアウト不可能問題

本（処理）がたくさん売れる（入る）から

店員（処理プロセス）を 1 人から 2 人にしたのに…

線形的なスケールアウト不可能問題

本（処理）がたくさん売れる（入る）から

店員（処理プロセス）を 1 人から 2 人にしたのに… 電卓は一個しかねえぞ！！！

線形的なスケールアウト不可能問題

本（処理）がたくさん売れる（入る）から

店員（処理プロセス）を 1 人から 2 人にしたのに…

2 人にしたのにお客さんを捌くスピードが…

電卓は一個しかねえぞ！！！

線形的なスケールアウト不可能問題

本（処理）がたくさん売れる（入る）から

店員（処理プロセス）を 1 人から 2 人にしたのに…

2 倍じゃねえ！
2 人にしたのにお客さんを捌くスピードが…

電卓は一個しかねえぞ！！！

Delayed

DB

線形的なスケールアウト不可能問題
ジョブがいっぱいあるのでいっぱい処理したい

Delayed

DB

Delayed

処理 Worker を増やす = 処理がもっと捌けるはず

Delayed

線形的なスケールアウト不可能問題
ジョブがいっぱいあるのでいっぱい処理したい

Delayed

DB

Delayed Delayed

線形的なスケールアウト不可能問題
ジョブがいっぱいあるのでいっぱい処理したい

処理実行！

Delayed

DB

Delayed

1 台の Worker が取得中

Delayed

線形的なスケールアウト不可能問題
ジョブがいっぱいあるのでいっぱい処理したい

処理実行！

Delayed

DB

Delayed Delayed

線形的なスケールアウト不可能問題
ジョブがいっぱいあるのでいっぱい処理したい

x

処理実行！
他の worker は待つ。

Job A

Worker A

Worker B

Job B

Job C

線形的なスケールアウト不可能問題
Job Table

Job A

Worker A

Worker B

Job B

Job C

線形的なスケールアウト不可能問題
Job Table

「空いてるジョブを 1 つロックして、俺にくれ！」

「空いてるジョブを 1 つロックして、俺にくれ！」

Job A

Worker A

Worker B

Job B

Job C

線形的なスケールアウト不可能問題
Job Table START TRANSACTION;

SELECT * FROM JOBS WHERE processed='no' FOR UPDATE LIMIT 1;
-- xxxxx
COMMIT

「空いてるジョブを 1 つロックして、俺にくれ！」

「空いてるジョブを 1 つロックして、俺にくれ！」

Job A

Worker A

Worker B

Job B

Job C

線形的なスケールアウト不可能問題
Job Table START TRANSACTION;

SELECT * FROM JOBS WHERE processed='no' FOR UPDATE LIMIT 1;
-- xxxxx
COMMIT

「空いてるジョブを 1 つロックして、俺にくれ！」

「ロックされてるから、待つか……」

「空いてるジョブを 1 つロックして、俺にくれ！」

Job A

Worker A

Worker B

Job B

Job C

線形的なスケールアウト不可能問題
Job Table START TRANSACTION;

SELECT * FROM JOBS WHERE processed='no' FOR UPDATE LIMIT 1;
-- xxxxx
COMMIT

「空いてるジョブを 1 つロックして、俺にくれ！」

「ロックされてるから、待つか……」

「空いてるジョブを 1 つロックして、俺にくれ！」

Transaction が commit されるまで JobB をとりにいかず、待ち worker になる

Job A

Worker A

Worker B

Job B

Job C

線形的なスケールアウト不可能問題
Job Table START TRANSACTION;

SELECT * FROM JOBS WHERE processed='no' FOR UPDATE LIMIT 1;
-- xxxxx
COMMIT

「空いてるジョブを 1 つロックして、俺にくれ！」

「ロックされてるから、待つか……」

「空いてるジョブを 1 つロックして、俺にくれ！」

Transaction が commit されるまで JobB をとりにいかず、待ち worker になる

= Worker を増やしても、ジョブの処理速度が綺麗に倍になってくれない

• はじめに： Teachme Biz について
• 課題 Part その 1
• 選定
• 設計と実装
• 移行
• 課題 Part その 2
• まとめ

現状

現状
非同期処理

ActiveJob を使ってるもの

現状
非同期処理

ActiveJob を使ってるもの
ClassName.delay.exec といった .delay メソッドを使ってるもの

現状
非同期処理

ActiveJob を使ってるもの
ClassName.delay.exec といった .delay メソッドを使ってるもの

定期処理管理
Whenever -> デプロイ時に crontab 作成

現状
非同期処理

ActiveJob を使ってるもの
ClassName.delay.exec といった .delay メソッドを使ってるもの

定期処理管理
Whenever -> デプロイ時に crontab 作成

ジョブのキュー
DB in MySQL8

現状
非同期処理

ActiveJob を使ってるもの
ClassName.delay.exec といった .delay メソッドを使ってるもの

定期処理管理
Whenever -> デプロイ時に crontab 作成

ジョブのキュー
DB in MySQL8

SRE チームで合意した方針
運用対象は増やさない & 運用対象は極力減らす

Sidekiq VS Solid Queue

比較観点の一例

比較観点の一例

⬜ 線形スケールアウト可能

比較観点の一例

⬜

⬜ 新しい AWS リソースが不要

線形スケールアウト可能

比較観点の一例

⬜

用途に応じて複数のキュー管理ができること

⬜ 新しい AWS リソースが不要

⬜

線形スケールアウト可能

比較観点の一例

⬜

用途に応じて複数のキュー管理ができること

⬜ 新しい AWS リソースが不要

⬜

線形スケールアウト可能

⬜ DB ロックでパフォーマンス劣化しない

比較観点の一例

⬜

用途に応じて複数のキュー管理ができること

⬜ 新しい AWS リソースが不要

⬜

線形スケールアウト可能

⬜ DB ロックでパフォーマンス劣化しない

⬜ ジョブのトランザクション内呼び出し対応

比較観点の一例

⬜

用途に応じて複数のキュー管理ができること

⬜ 新しい AWS リソースが不要

⬜

線形スケールアウト可能

⬜ DB ロックでパフォーマンス劣化しない

⬜ Rails との親和性

⬜ ジョブのトランザクション内呼び出し対応

比較観点の一例

⬜

用途に応じて複数のキュー管理ができること

⬜ 新しい AWS リソースが不要

⬜

線形スケールアウト可能

⬜ DB ロックでパフォーマンス劣化しない

⬜ Rails との親和性

⬜ 定期実行処理基盤がある

⬜ ジョブのトランザクション内呼び出し対応

比較観点の一例

⬜

用途に応じて複数のキュー管理ができること

⬜ 新しい AWS リソースが不要

⬜

線形スケールアウト可能

⬜ DB ロックでパフォーマンス劣化しない

⬜ Rails との親和性

⬜ 定期実行処理基盤がある

⬜

⬜ 無課金で使いたい

ジョブのトランザクション内呼び出し対応

Sidekiq Pro

用途に応じて複数のキュー管理が可能

新しい AWS リソースが不要

線形スケールアウト可能

DB ロックでパフォーマンス劣化しない

Rails との親和性

定期実行処理基盤がある

無課金で使いたい

✅

✅

✅

✅

✅

⬜

⬜

⬜

ジョブのトランザクション内呼び出し対応

Sidekiq Pro のいいところ

Sidekiq Pro のいいところ
✅ めっちゃ強力 Batches 機能

Sidekiq Pro のいいところ
✅ めっちゃ強力 Batches 機能

たくさんのジョブ 1 まとめ実行で、大量データも安全・安心処理

Sidekiq Pro のいいところ
✅

ジョブが失敗しても心配不要！✅

めっちゃ強力 Batches 機能

たくさんのジョブ 1 まとめ実行で、大量データも安全・安心処理

Sidekiq Pro のいいところ
✅

ジョブが失敗しても心配不要！✅

めっちゃ強力 Batches 機能

たくさんのジョブ 1 まとめ実行で、大量データも安全・安心処理

複数のジョブを一つのトランザクションとして扱えるJob Failures

ジョブが失敗した時に自動的にリトライするReliable Queues

失敗しても安心設計だぜ！

Sidekiq Pro のいいところ
✅

ジョブが失敗しても心配不要！✅

最強のスケジューリング機能✅

めっちゃ強力 Batches 機能

たくさんのジョブ 1 まとめ実行で、大量データも安全・安心処理

複数のジョブを一つのトランザクションとして扱えるJob Failures

ジョブが失敗した時に自動的にリトライするReliable Queues

失敗しても安心設計だぜ！

Sidekiq Pro のいいところ
✅

ジョブが失敗しても心配不要！✅

最強のスケジューリング機能✅

めっちゃ強力 Batches 機能

たくさんのジョブ 1 まとめ実行で、大量データも安全・安心処理

複数のジョブを一つのトランザクションとして扱えるJob Failures

ジョブが失敗した時に自動的にリトライするReliable Queues

失敗しても安心設計だぜ！

ジョブの実行順序を細かく制御できる Unique Jobs

特定の時間までジョブの実行を遅らせるScheduled Jobs

自社事情をふまえた Sidekiq Pro の評価

自社事情をふまえた Sidekiq Pro の評価
新しい AWS リソースが必要⬜

自社事情をふまえた Sidekiq Pro の評価
新しい AWS リソースが必要

Valkey or Redis が必要

⬜

自社事情をふまえた Sidekiq Pro の評価
新しい AWS リソースが必要

秘めたる力を完璧に使いこなすには大量にある ActiveJob バッチの書き換えがいる

Valkey or Redis が必要

⬜

⬜

自社事情をふまえた Sidekiq Pro の評価
新しい AWS リソースが必要

秘めたる力を完璧に使いこなすには大量にある ActiveJob バッチの書き換えがいる

Valkey or Redis が必要

ActiveJob だと全ての機能を使いきれない

⬜

⬜

自社事情をふまえた Sidekiq Pro の評価
新しい AWS リソースが必要

秘めたる力を完璧に使いこなすには大量にある ActiveJob バッチの書き換えがいる

お金！

Valkey or Redis が必要

ActiveJob だと全ての機能を使いきれない

⬜

⬜

⬜

自社事情をふまえた Sidekiq Pro の評価
新しい AWS リソースが必要

秘めたる力を完璧に使いこなすには大量にある ActiveJob バッチの書き換えがいる

お金！

Valkey or Redis が必要

ActiveJob だと全ての機能を使いきれない

有料！
⬜

⬜

⬜

SolidQueue

用途に応じて複数のキュー管理が可能

新しい AWS リソースが不要

線形スケールアウト可能

DB ロックでパフォーマンス劣化しない

Rails との親和性

定期実行処理基盤がある

ジョブのトランザクション内呼び出し対応

無課金で使いたい

✅

✅

✅

✅

✅

✅

✅

✅

Solid Queue のいいところ . 1

Solid Queue のいいところ . 1

線形スケールアウト大得意

Solid Queue のいいところ . 1

線形スケールアウト大得意

ジョブを実行する Worker を増やせば増やすほどパフォーマンスが上がる。

ジョブ取得の仕組みがロックを最小限するような安心設計

Solid Queue のいいところ . 1

線形スケールアウト大得意

ジョブを実行する Worker を増やせば増やすほどパフォーマンスが上がる。

ジョブ取得の仕組みがロックを最小限するような安心設計

パフォーマンスとスケーラビリティの向上
⬜ 綺麗に線形にスケールアウトできるようにしたい
⬜ 処理できるジョブの数を増やしたい
⬜ リソースを有効活用したい

Solid Queue のいいところ . 1

線形スケールアウト大得意

ジョブを実行する Worker を増やせば増やすほどパフォーマンスが上がる。

ジョブ取得の仕組みがロックを最小限するような安心設計

パフォーマンスとスケーラビリティの向上
✅ 綺麗に線形にスケールアウトできるようにしたい

処理できるジョブの数を増やしたい
リソースを有効活用したい

✅

✅

Solid Queue のいいところ . 1

線形スケールアウト大得意

ジョブを実行する Worker を増やせば増やすほどパフォーマンスが上がる。

ジョブ取得の仕組みがロックを最小限するような安心設計

パフォーマンスとスケーラビリティの向上
✅ 綺麗に線形にスケールアウトできるようにしたい

処理できるジョブの数を増やしたい
リソースを有効活用したい

✅

✅

✅

Solid Queue のいいところ . 2

Solid Queue のいいところ . 2

運用・インフラストラクチャの効率化✅

Solid Queue のいいところ . 2

運用・インフラストラクチャの効率化

既存の Aurora インスタンスに新しく create database するだけ

新しいインフラリソースが不要

✅

Solid Queue のいいところ . 2

運用・インフラストラクチャの効率化

既存の Aurora インスタンスに新しく create database するだけ

新しいインフラリソースが不要

✅

持ち物が増えない

Solid Queue のいいところ . 3

Solid Queue のいいところ . 3

ActiveJob バックエンドだぜ

Solid Queue のいいところ . 3

ActiveJob バックエンドだぜ

Rails チームが開発している非同期バックエンド！

Solid Queue のいいところ . 3

ActiveJob バックエンドだぜ

Rails チームが開発している非同期バックエンド！

✅

Solid Queue の物足りないところ

Solid Queue の物足りないところ

監視機能がないんだぜ⬜

Solid Queue の物足りないところ

監視機能がないんだぜ
自前でなんとかしろスタイル

⬜

とりあえず見た感じやりたいこと全部解決してくれそう
パフォーマンスとスケーラビリティの向上

柔軟なジョブ管理と優先制御

開発と運用の効率化

綺麗に線形にスケールアウトできるようにしたい

処理できるジョブの数を増やしたい
リソースを有効活用したい

優先度を定義したら優先度を守ってほしい
ジョブごとにキューと Worker を分けたい
定期実行処理をまとめたい

 ActiveJob に移行したい（ Delayed 専用の書き方と ActiveJob の混在廃止）

できるだけ Rails 標準機能に寄せたい

✅

✅

✅

✅

✅
✅

✅

✅

Solid Queue の内部実装の理解

どうして必要 ?
Solid Queue の内部実装の理解

どうして必要 ?
Solid Queue の内部実装の理解

監視

パフォーマンス・チューニング

障害対応とトラブルシューティング

どうして必要 ?
Solid Queue の内部実装の理解

監視

パフォーマンス・チューニング

障害対応とトラブルシューティング

DB 構成を把握し、クエリを投げてメトリクス取得する

どうして必要 ?
Solid Queue の内部実装の理解

監視

パフォーマンス・チューニング

障害対応とトラブルシューティング

DB 構成を把握し、クエリを投げてメトリクス取得する

ジョブの処理するフローを理解しワーカープロセス数などの調節

どうして必要 ?
Solid Queue の内部実装の理解

監視

パフォーマンス・チューニング

障害対応とトラブルシューティング

DB 構成を把握し、クエリを投げてメトリクス取得する

ジョブの処理するフローを理解しワーカープロセス数などの調節

DB 構成とジョブ処理フローを理解しトラブルを未然に防いだり
発生時に素早く対応できるようにしておく

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

全体図（間に色々あるけど主要なものだけ）

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

全体図（間に色々あるけど主要なものだけ）
ジョブがエンキューされると入るテーブル

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

全体図（間に色々あるけど主要なものだけ）

ジョブがスケジューリングされると
入るテーブル

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

全体図（間に色々あるけど主要なものだけ）

実行準備 OK になると
入るテーブル

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

全体図（間に色々あるけど主要なものだけ）

実行中になると
入るテーブル

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

全体図（間に色々あるけど主要なものだけ）

ジョブが失敗すると
入るテーブル

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

次の実行時刻が決まっているジョブの場合

scheduled_at

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

次の実行時刻が決まっているジョブの場合

scheduled_at

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

次の実行時刻が決まっているジョブの場合

scheduled_at

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

次の実行時刻が決まっているジョブの場合

scheduled_at

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

次の実行時刻が決まっているジョブの場合

scheduled_at

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

次の実行時刻が決まっているジョブの場合

scheduled_at

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

すぐ実行したいジョブの場合

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

すぐ実行したいジョブの場合

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

すぐ実行したいジョブの場合

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

すぐ実行したいジョブの場合

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

すぐ実行したいジョブの場合

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

監視時はそれぞれのテーブルを頭に入れてクエリを書く

job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

監視時はそれぞれのテーブルを頭に入れてクエリを書く

トラブル時はどこに実行したジョブのデータが入っているかで現状がわかる

Solid Queue で解決する線形スケールアウト

Job A

Worker A

Worker B

Job B

Job C

Solid Queue で解決する線形スケールアウト
Job Table

Job A

Worker A

Worker B

Job B

Job C

Solid Queue で解決する線形スケールアウト
Job Table

「空いてるジョブを 1 つロックして、俺にくれ！」

Job A

Worker A

Worker B

Job B

Job C

Solid Queue で解決する線形スケールアウト
Job Table

「空いてるジョブを 1 つロックして、俺にくれ！」

START TRANSACTION;

SELECT * FROM jobs̲ table FOR UPDATE SKIP LOCKED LIMIT 1;

COMMIT

Job A

Worker A

Worker B

Job B

Job C

Solid Queue で解決する線形スケールアウト
Job Table

「空いてるジョブを 1 つロックして、俺にくれ！」

START TRANSACTION;

SELECT * FROM jobs̲ table FOR UPDATE SKIP LOCKED LIMIT 1;

COMMIT

Job A

Worker A

Worker B

Job B

Job C

Solid Queue で解決する線形スケールアウト
Job Table

「空いてるジョブを 1 つロックして、俺にくれ！」

「空いてるジョブを 1 つロックして、俺にくれ！
 ただし、誰かがロックしているジョブなら無視していいぜ！」

START TRANSACTION;

SELECT * FROM jobs̲ table FOR UPDATE SKIP LOCKED LIMIT 1;

COMMIT

Solid Queue の線形的なスケールアウト

本（処理）がたくさん売れる（入る）から

店員（処理プロセス）を 1 人から 2 人にした

Solid Queue の線形的なスケールアウト

本（処理）がたくさん売れる（入る）から

店員（処理プロセス）を 1 人から 2 人にした

電卓を二つ用意して、お客さんは

空いている方に行ってもらうよ

Solid Queue の線形的なスケールアウト

本（処理）がたくさん売れる（入る）から

店員（処理プロセス）を 1 人から 2 人にした

待ち時間ロックされないのでお客さんを捌くスピードが…

電卓を二つ用意して、お客さんは

空いている方に行ってもらうよ

Solid Queue の線形的なスケールアウト

本（処理）がたくさん売れる（入る）から

店員（処理プロセス）を 1 人から 2 人にした

倍だぜ！
待ち時間ロックされないのでお客さんを捌くスピードが…

電卓を二つ用意して、お客さんは

空いている方に行ってもらうよ

• はじめに： Teachme Biz について
• 課題 Part その 1
• 選定
• 設計と実装そして移行
• 課題 Part その 2
• まとめ

移行手順
Delayed固有メソッドの撲滅

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

⬜

⬜

⬜

監視

SolidQueue を利用するように全 Job を変更

⬜

⬜

gem uninstall delayed⬜

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

⬜

⬜

⬜

監視

SolidQueue を利用するように全 Job を変更

⬜

⬜

gem uninstall delayed⬜

Delayed固有メソッドの撲滅
移行手順

".delay" Method

 TestClass.delay.send_mail(user_id: user.id)

".delay" Method

 TestClass.delay.send_mail(user_id: user.id)

".delay" Method

TestClass.delay.send_mail

delayed_jobs Table

 TestClass.delay.send_mail(user_id: user.id)

".delay" Method

TestClass.delay.send_mail

delayed_jobs Table

 TestClass.delay.send_mail(user_id: user.id)

".delay" Method

TestClass.delay.send_mail

delayed_jobs Table

 TestClass.delay.send_mail(user_id: user.id)

".delay" Method

TestClass.delay.send_mail

delayed_jobs Table

処理開始！ Go!

 TestClass.delay.send_mail(user_id: user.id)

 TestClass.delay.send_mail(user_id: user.id)

".delay" Method

 TestClass.delay.send_mail(user_id: user.id)

".delay" Method

Pros

•シンプルで分かりやすい、直感的

•ActiveRecordのモデルと相性が良い

 TestClass.delay.send_mail(user_id: user.id)

".delay" Method

Pros

•シンプルで分かりやすい、直感的

•ActiveRecordのモデルと相性が良い

Cons

•キュー指定が不可

•優先度を細かく指定が難しい

•Delayed に依存した書き方になってしまう

 TestClass.delay.send_mail(user_id: user.id)

".delay" Method

Pros

•シンプルで分かりやすい、直感的

•ActiveRecordのモデルと相性が良い

Cons

•キュー指定が不可

•優先度を細かく指定が難しい

•Delayed に依存した書き方になってしまう

Delayed からのがれられない……

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

監視

SolidQueue を利用するように全 Job を変更

⬜

⬜

⬜

gem uninstall delayed⬜

✅

⬜
Delayed固有メソッドの撲滅

移行手順

ActiveJob で明示的に Delayed指定

 TestClass.delay.send_mail(
 user_id: user.id
)

ActiveJob で明示的に Delayed指定

class TestClassJob < ApplicationJob
 self.queue_adapter = :delayed
 queue_as :mail

 def perform(user_id:)
 # ~~~~~
 end
end

 TestClass.delay.send_mail(
 user_id: user.id
)

ActiveJob で明示的に Delayed指定

class TestClassJob < ApplicationJob
 self.queue_adapter = :delayed
 queue_as :mail

 def perform(user_id:)
 # ~~~~~
 end
end

 TestClass.delay.send_mail(
 user_id: user.id
)

ActiveJob で明示的に Delayed指定

class TestClassJob < ApplicationJob
 self.queue_adapter = :delayed
 queue_as :mail

 def perform(user_id:)
 # ~~~~~
 end
end

SolidQueue を install しても Delayed で動作
 TestClass.delay.send_mail(
 user_id: user.id
)

ActiveJob で明示的に Delayed指定

class TestClassJob < ApplicationJob
 self.queue_adapter = :delayed
 queue_as :mail

 def perform(user_id:)
 # ~~~~~
 end
end

SolidQueue を install しても Delayed で動作

移行中 SolidQueue関連の PR をマージしても

稼働中システムには影響なし！

 TestClass.delay.send_mail(
 user_id: user.id
)

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

監視

SolidQueue を利用するように全 Job を変更

⬜

⬜

⬜

gem uninstall delayed⬜

✅

✅

Delayed固有メソッドの撲滅
移行手順

Solid Queue Configuration

production:
 dispatchers:
 - polling_interval: 1
 batch_size: 500
 workers:
 - queues: "default"
 threads: 2
 processes: 5
 polling_interval: 5
 - queues: "mail"
 threads: 2
 processes: 5
 polling_interval: 1

config/solid_queue/queue_config.yml
Dispatcher

solid̲ queue̲ jobs solid̲ queue̲ ready̲ executions

worker:default worker: mail

Solid Queue Configuration

production:
 dispatchers:
 - polling_interval: 1
 batch_size: 500
 workers:
 - queues: "default"
 threads: 2
 processes: 5
 polling_interval: 5
 - queues: "mail"
 threads: 2
 processes: 5
 polling_interval: 1

config/solid_queue/queue_config.yml
Dispatcher

solid̲ queue̲ jobs solid̲ queue̲ ready̲ executions

worker:default worker: mail

Solid Queue Configuration

production:
 dispatchers:
 - polling_interval: 1
 batch_size: 500
 workers:
 - queues: "default"
 threads: 2
 processes: 5
 polling_interval: 5
 - queues: "mail"
 threads: 2
 processes: 5
 polling_interval: 1

config/solid_queue/queue_config.yml
Dispatcher

solid̲ queue̲ jobs solid̲ queue̲ ready̲ executions

worker:default worker: mail

Solid Queue Configuration

production:
 dispatchers:
 - polling_interval: 1
 batch_size: 500
 workers:
 - queues: "default"
 threads: 2
 processes: 5
 polling_interval: 5
 - queues: "mail"
 threads: 2
 processes: 5
 polling_interval: 1

config/solid_queue/queue_config.yml
Dispatcher

solid̲ queue̲ jobs solid̲ queue̲ ready̲ executions

worker:default worker: mail

Solid Queue Configuration:2

production:
 dispatchers:
 - polling_interval: 1
 batch_size: 500
 workers:
 - queues: "default"
 threads: 2
 processes: 5
 polling_interval: 5
 - queues: "mail"
 threads: 2
 processes: 5
 polling_interval: 1

config/solid_queue/queue_config.yml

Solid Queue Configuration:2

通常のジョブ

production:
 dispatchers:
 - polling_interval: 1
 batch_size: 500
 workers:
 - queues: "default"
 threads: 2
 processes: 5
 polling_interval: 5
 - queues: "mail"
 threads: 2
 processes: 5
 polling_interval: 1

config/solid_queue/queue_config.yml

Solid Queue Configuration:2

通常のジョブ

メール送信用

production:
 dispatchers:
 - polling_interval: 1
 batch_size: 500
 workers:
 - queues: "default"
 threads: 2
 processes: 5
 polling_interval: 5
 - queues: "mail"
 threads: 2
 processes: 5
 polling_interval: 1

config/solid_queue/queue_config.yml

config.solid_queue.use_skip_locked = true

config.solid_queue.shutdown_timeout = 600.seconds

config.solid_queue.silence_polling = true

config.solid_queue.preserve_finished_jobs = false

Solid Queue Configuration3

config/initializers/solid_queue.rb

config.solid_queue.use_skip_locked = true

config.solid_queue.shutdown_timeout = 600.seconds

config.solid_queue.silence_polling = true

config.solid_queue.preserve_finished_jobs = false

Solid Queue Configuration3

UPDATE SKIP LOCKED を使う

config/initializers/solid_queue.rb

config.solid_queue.use_skip_locked = true

config.solid_queue.shutdown_timeout = 600.seconds

config.solid_queue.silence_polling = true

config.solid_queue.preserve_finished_jobs = false

Solid Queue Configuration3

UPDATE SKIP LOCKED を使う

プロセスに TERM シグナル送信後プロセス終了までの時間（ 10分）

config/initializers/solid_queue.rb

config.solid_queue.use_skip_locked = true

config.solid_queue.shutdown_timeout = 600.seconds

config.solid_queue.silence_polling = true

config.solid_queue.preserve_finished_jobs = false

Solid Queue Configuration3

UPDATE SKIP LOCKED を使う

プロセスに TERM シグナル送信後プロセス終了までの時間（ 10分）

ワーカーとディスパッチャをポーリングするときの Active Record ログを抑制する

config/initializers/solid_queue.rb

config.solid_queue.use_skip_locked = true

config.solid_queue.shutdown_timeout = 600.seconds

config.solid_queue.silence_polling = true

config.solid_queue.preserve_finished_jobs = false

Solid Queue Configuration3

UPDATE SKIP LOCKED を使う

プロセスに TERM シグナル送信後プロセス終了までの時間（ 10分）

ワーカーとディスパッチャをポーリングするときの Active Record ログを抑制する

完了したジョブをテーブルに残さない

config/initializers/solid_queue.rb

Web Pod Delayed Pod

Infrastructure(Before)

EKS

main
DB

Web Pod Solid Queue (Main)

Solid Queue Infrastructure(After)

main
DB

Queue
DB

EKS

.delayメソッドの撲滅

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

監視

SolidQueue を利用するように全 Job を変更

⬜

⬜

gem uninstall delayed⬜

✅

✅

✅

移行手順

Migration Requirements
.delayメソッドの撲滅

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

監視

SolidQueue を利用するように全 Job を変更

⬜

⬜

gem uninstall delayed⬜

✅

✅

✅

監視するぞ！ (delayed編)
• delayed.job.count - ジョブの総数

• delayed.job.future_count -未来に実行されるジョブの数

• delayed.job.working_count - 現在処理中のジョブ数

• delayed.job.workable_count - 処理待ちのジョブ

• delayed.job.erroring_count - 実行に失敗したジョブ（失敗回数が 1回以上）

• delayed.job.failed_count - 最終的に失敗したジョブ（もうリトライできない）

• delayed.job.max_lock_age - ずっとロックされ続けているジョブ

• delayed.job.max_age - 最も古いジョブの経過時間

•

Delayed の機能として

提供されてるんだぜ！

監視するぞ！ (Solid Queue編)
• job.count - ジョブの総数

• job.future_count -未来に実行されるジョブの数

• job.working_count - 現在処理中のジョブ数

• job.workable_count - 処理待ちのジョブ

• job.erroring_count - 実行に失敗したジョブ（失敗回数が 1回以上）

• job.failed_count - 最終的に失敗したジョブ（もうリトライできない）

• job.max_lock_age - ずっとロックされ続けているジョブ

• job.max_age - 最も古いジョブの経過時間

•

監視するぞ！ (Solid Queue編)
• job.count - ジョブの総数

• job.future_count -未来に実行されるジョブの数

• job.working_count - 現在処理中のジョブ数

• job.workable_count - 処理待ちのジョブ

• job.erroring_count - 実行に失敗したジョブ（失敗回数が 1回以上）

• job.failed_count - 最終的に失敗したジョブ（もうリトライできない）

• job.max_lock_age - ずっとロックされ続けているジョブ

• job.max_age - 最も古いジョブの経過時間

•

Solid Queue の機能として

提供されていないぜ！

監視するぞ！ (Solid Queue編)

自前実装しました！

監視するぞ！ (Solid Queue編)

自前実装しました！

監視するぞ！ (Solid Queue編)

メトリクス名 解説

future_count 将来実行されるジョブの数。特定の時刻に実行がスケジュ
ールされているジョブの合計

workable_count 処理待ちのジョブの数。ワーカーにいつでも実行してもら
える状態のジョブの合計

working_count 現在処理中のジョブの数。ワーカーが今まさに動かしてい
るジョブの合計

retry_count 再実行を待っているジョブの数。一度失敗して、リトライ
処理が設定されているジョブの合計

監視するぞ！ (Solid Queue編)
キューの状態メトリクス

メトリクス名 解説

future_count 将来実行されるジョブの数。特定の時刻に実行がスケジュ
ールされているジョブの合計

workable_count 処理待ちのジョブの数。ワーカーにいつでも実行してもら
える状態のジョブの合計

working_count 現在処理中のジョブの数。ワーカーが今まさに動かしてい
るジョブの合計

retry_count 再実行を待っているジョブの数。一度失敗して、リトライ
処理が設定されているジョブの合計

監視するぞ！ (Solid Queue編)

メトリクス名 解説

throughput_rate 直近 1 分間に処理が完了したジョブの数

max_age 最長待機時間。最も長く待っているジョブの経過時間

median_wait_time 待機時間の中央値

max_lock_age 最長実行。

average_lock_age 平均実行時間。実行中のジョブの平均的な処理時間

キューの状態メトリクス

パフォーマンスメトリクス

メトリクス名 解説

future_count 将来実行されるジョブの数。特定の時刻に実行がスケジュ
ールされているジョブの合計

workable_count 処理待ちのジョブの数。ワーカーにいつでも実行してもら
える状態のジョブの合計

working_count 現在処理中のジョブの数。ワーカーが今まさに動かしてい
るジョブの合計

retry_count 再実行を待っているジョブの数。一度失敗して、リトライ
処理が設定されているジョブの合計

監視するぞ！ (Solid Queue編)

メトリクス名 解説

throughput_rate 直近 1 分間に処理が完了したジョブの数

max_age 最長待機時間。最も長く待っているジョブの経過時間

median_wait_time 待機時間の中央値

max_lock_age 最長実行。

average_lock_age 平均実行時間。実行中のジョブの平均的な処理時間

キューの状態メトリクス

パフォーマンスメトリクス

メトリクス名 解説

erroring_count エラー付きで失敗したジョブの数。エラーメッセージが付いている
失敗ジョブの合計。

failed_count 直近1時間で失敗したジョブの総数。エラーの有無を問わず、失敗し
たジョブの合計。

stale_jobs_count 停滞しているジョブの数。長時間（1時間以上）実行中のジョブで、
デッドロックや無限ループの可能性。

error_rate エラー率。直近1時間の全ジョブのうち、エラーで失敗した割合。

worker_utilization ワーカーの使用率。割り当てられたワーカーがどれだけ働いている
かの割合。

alert_age_percent アラート閾値比率だ。優先度を考慮した待機時間が、事前に設定し
た閾値にどれだけ近づいているかを示す割合。

エラーアラートメトリクス

Migration Requirements
.delayメソッドの撲滅

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

監視

SolidQueue を利用するように全 Job を変更⬜

gem uninstall delayed⬜

✅

✅

✅

✅

Delayed -> SolidQueue!

Delayed -> SolidQueue!
class TestClassJob < ApplicationJob
 self.queue_adapter = :delayed
 queue_as :mail

 def perform(user_id:)
 # ~~~~~
 end
end

Delayed -> SolidQueue!
class TestClassJob < ApplicationJob
 self.queue_adapter = :delayed
 queue_as :mail

 def perform(user_id:)
 # ~~~~~
 end
end

class TestClassJob < ApplicationJob
 self.queue_adapter = :solid_queue
 queue_as :mail

 def perform(user_id:)
 # ~~~~~
 end
end

Delayed -> SolidQueue!

delayed -> solid̲ queue に変更！

class TestClassJob < ApplicationJob
 self.queue_adapter = :delayed
 queue_as :mail

 def perform(user_id:)
 # ~~~~~
 end
end

class TestClassJob < ApplicationJob
 self.queue_adapter = :solid_queue
 queue_as :mail

 def perform(user_id:)
 # ~~~~~
 end
end

Delayed -> SolidQueue!

delayed -> solid̲ queue に変更！

x Jobs Count

class TestClassJob < ApplicationJob
 self.queue_adapter = :delayed
 queue_as :mail

 def perform(user_id:)
 # ~~~~~
 end
end

class TestClassJob < ApplicationJob
 self.queue_adapter = :solid_queue
 queue_as :mail

 def perform(user_id:)
 # ~~~~~
 end
end

2025/3/5 完全移行作業！ done!

2025/3/5 完全移行作業！ done!

やったか !？

Migration Requirements
.delayメソッドの撲滅

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

監視

SolidQueue を利用するように全 Job を変更

gem uninstall delayed⬜

✅

✅

✅

✅

⬜

できてないぜ！

• はじめに： Teachme Biz について
• 課題 Part1 （移行前）
• 選定
• 設計と実装
• 移行
• 課題 Part2(移行後)
• まとめ

enqueue̲ after̲ transaction̲ commit 効いてない問題

2012 年リリース Rails3.2.1 -> 2025 年 3 月当時 Rails7.1

enqueue_after_transaction_commit 設定されてなくない？

enqueue̲ after̲ transaction̲ commit とは

enqueue̲ after̲ transaction̲ commit とは

DB のトランザクション整合性を有効にできるオプション。

enqueue̲ after̲ transaction̲ commit とは

DB のトランザクション整合性を有効にできるオプション。

class ApplicationJob < ActiveJob::Base

 self.enqueue_after_transaction_commit = true

end

enqueue_after_transaction_commit は Rails7.2 から

用途に応じて複数のキュー管理が可能

新しい AWS リソースが不要

線形スケールアウト可能

DB ロックでパフォーマンス劣化しない

Rails との親和性

定期実行処理基盤がある

トランザクション内呼び出し対応

無課金で使いたい

✅

✅

✅

✅

✅

✅

✅

✅

2012 年リリース Rails3.2.1 -> 2025 年 3 月当時 Rails7.1

enqueue_after_transaction_commit....？

ActiveRecord::Base.transaction do

 user = User.create!(name: " 新しいユーザー ")

 WelcomeEmailJob.perform_later(user.id)

 raise "Something went wrong!"

end

トランザクション内部に書かれたジョブ問題 1

ActiveRecord::Base.transaction do

 user = User.create!(name: " 新しいユーザー ")

 WelcomeEmailJob.perform_later(user.id)

 raise "Something went wrong!"

end

トランザクション内部に書かれたジョブ問題 1
ユーザを DB に保存（未コミット）

ActiveRecord::Base.transaction do

 user = User.create!(name: " 新しいユーザー ")

 WelcomeEmailJob.perform_later(user.id)

 raise "Something went wrong!"

end

トランザクション内部に書かれたジョブ問題 1
ユーザを DB に保存（未コミット）

ジョブをキューに入れる

ActiveRecord::Base.transaction do

 user = User.create!(name: " 新しいユーザー ")

 WelcomeEmailJob.perform_later(user.id)

 raise "Something went wrong!"

end

トランザクション内部に書かれたジョブ問題 1
ユーザを DB に保存（未コミット）

ジョブをキューに入れる

ジョブはユーザが作成済み前提で実行

ActiveRecord::Base.transaction do

 user = User.create!(name: " 新しいユーザー ")

 WelcomeEmailJob.perform_later(user.id)

 raise "Something went wrong!"

end

トランザクション内部に書かれたジョブ問題 1
ユーザを DB に保存（未コミット）

ジョブをキューに入れる

ジョブはユーザが作成済み前提で実行

呼び出し元メソッドで例外発生

ActiveRecord::Base.transaction do

 user = User.create!(name: " 新しいユーザー ")

 WelcomeEmailJob.perform_later(user.id)

 raise "Something went wrong!"

end

トランザクション内部に書かれたジョブ問題 1
ユーザを DB に保存（未コミット）

ジョブをキューに入れる

ジョブはユーザが作成済み前提で実行

呼び出し元メソッドで例外発生

user がないのに
処理実行される！！

Web Pod Delayed Pod

トランザクション内部に書かれたジョブ問題 2

EKS

main
DB

Web Pod Delayed Pod

トランザクション内部に書かれたジョブ問題 2

EKS

main
DB

1. Web にアクセスがある

Web Pod Delayed Pod

トランザクション内部に書かれたジョブ問題 2

EKS

main
DB

1. Web にアクセスがある

2. トランザクション開始＆ユーザ作成

Web Pod Delayed Pod

トランザクション内部に書かれたジョブ問題 2

EKS

main
DB

1. Web にアクセスがある

2. トランザクション開始＆ユーザ作成

3. ジョブをエンキュー（未コミット）

Web Pod Delayed Pod

トランザクション内部に書かれたジョブ問題 2

EKS

main
DB

1. Web にアクセスがある

2. トランザクション開始＆ユーザ作成

3. ジョブをエンキュー（未コミット）

コミットしない限り worker は
ジョブを取得不可能

x

Web Pod Solid Queue (Main)

main
DB

Queue
DB

EKS

トランザクション内部に書かれたジョブ問題 2

Web Pod Solid Queue (Main)

main
DB

Queue
DB

EKS

トランザクション内部に書かれたジョブ問題 2

1. Web にアクセスがある

Web Pod Solid Queue (Main)

main
DB

Queue
DB

EKS

トランザクション内部に書かれたジョブ問題 2

1. Web にアクセスがある

2. トランザクション開始

Web Pod Solid Queue (Main)

main
DB

Queue
DB

EKS

トランザクション内部に書かれたジョブ問題 2

1. Web にアクセスがある

2. トランザクション開始

3. 処理の DB保存処理（未コミット）

Web Pod Solid Queue (Main)

main
DB

Queue
DB

EKS

トランザクション内部に書かれたジョブ問題 2

1. Web にアクセスがある

2. トランザクション開始

3. 処理の DB保存処理（未コミット）

4. キュー DB にキューがはいる

Web Pod Solid Queue (Main)

main
DB

Queue
DB

EKS

トランザクション内部に書かれたジョブ問題 2

1. Web にアクセスがある

2. トランザクション開始

3. 処理の DB保存処理（未コミット）

4. キュー DB にキューがはいる

5.Worker が取得に行く

Web Pod Solid Queue (Main)

main
DB

Queue
DB

EKS

トランザクション内部に書かれたジョブ問題 2

1. Web にアクセスがある

2. トランザクション開始

3. 処理の DB保存処理（未コミット）

4. キュー DB にキューがはいる

main DB のコミット状況は QueueDB は知ったことではない

5.Worker が取得に行く

Web Pod Solid Queue (Main)

main
DB

Queue
DB

EKS

トランザクション内部に書かれたジョブ問題 2

1. Web にアクセスがある

2. トランザクション開始

3. 処理の DB保存処理（未コミット）

4. キュー DB にキューがはいる

main DB のコミット状況は QueueDB は知ったことではない

5.Worker が取得に行く

6.コミット前にジョブが実行される

解決法トランザクション内部に書かれたジョブ問題

解決法トランザクション内部に書かれたジョブ問題
enqueue̲ after̲ transaction̲ commit を使えるようにする！

ActiveRecord::Base.transaction do

 user = User.create!(name: " 新しいユーザー ")

 WelcomeEmailJob.perform_later(user.id)

 raise "Something went wrong!"

end

解決法トランザクション内部に書かれたジョブ問題
enqueue̲ after̲ transaction̲ commit を使えるようにする！

ActiveRecord::Base.transaction do

 user = User.create!(name: " 新しいユーザー ")

 WelcomeEmailJob.perform_later(user.id)

 raise "Something went wrong!"

end

解決法トランザクション内部に書かれたジョブ問題
ユーザを DB に保存（未コミット）enqueue̲ after̲ transaction̲ commit を使えるようにする！

ActiveRecord::Base.transaction do

 user = User.create!(name: " 新しいユーザー ")

 WelcomeEmailJob.perform_later(user.id)

 raise "Something went wrong!"

end

解決法トランザクション内部に書かれたジョブ問題
ユーザを DB に保存（未コミット）

非同期処理がよばれる
（エンキューされない）

enqueue̲ after̲ transaction̲ commit を使えるようにする！

ActiveRecord::Base.transaction do

 user = User.create!(name: " 新しいユーザー ")

 WelcomeEmailJob.perform_later(user.id)

 raise "Something went wrong!"

end

解決法トランザクション内部に書かれたジョブ問題
ユーザを DB に保存（未コミット）

非同期処理がよばれる
（エンキューされない）

enqueue̲ after̲ transaction̲ commit を使えるようにする！

呼び出し元メソッドで例外発生

ActiveRecord::Base.transaction do

 user = User.create!(name: " 新しいユーザー ")

 WelcomeEmailJob.perform_later(user.id)

 raise "Something went wrong!"

end

解決法トランザクション内部に書かれたジョブ問題
ユーザを DB に保存（未コミット）

非同期処理がよばれる
（エンキューされない）

enqueue̲ after̲ transaction̲ commit を使えるようにする！

ユーザは保存されない
（ DB にコミットされない）

呼び出し元メソッドで例外発生

ActiveRecord::Base.transaction do

 user = User.create!(name: " 新しいユーザー ")

 WelcomeEmailJob.perform_later(user.id)

 raise "Something went wrong!"

end

解決法トランザクション内部に書かれたジョブ問題
ユーザを DB に保存（未コミット）

非同期処理がよばれる
（エンキューされない）

enqueue̲ after̲ transaction̲ commit を使えるようにする！

ユーザは保存されない
（ DB にコミットされない）

成功しなかったので
最終的にもエンキューされない！

呼び出し元メソッドで例外発生

トランザクション内部に書かれたジョブ問題

トランザクション内部に書かれたジョブ問題
Teachme Biz にはあるのか？

トランザクション内部に書かれたジョブ問題

before̲ xxx / after̲ xxxx に書かれたもの

Teachme Biz にはあるのか？

トランザクション内部に書かれたジョブ問題

before̲ xxx / after̲ xxxx に書かれたもの

明示的に transaction で囲まれたもの

Teachme Biz にはあるのか？

トランザクション内部に書かれたジョブ問題

before̲ xxx / after̲ xxxx に書かれたもの

Rails あげるか！！
明示的に transaction で囲まれたもの

Teachme Biz にはあるのか？

あげました！

Transaction 完了前に
エンキューさせて
実行して欲しい場合はどうするの？

Transaction 完了前に
エンキューさせて
実行して欲しい場合はどうするの？設計を見直して

Solid Queue 速すぎて過負荷になった問題

Solid Queue 速すぎて過負荷になった問題

SolidQueue リリースから数日後

Solid Queue 速すぎて過負荷になった問題

重くない？

SolidQueue リリースから数日後

Solid Queue 速すぎて過負荷になった問題

重くない？

というかアクセスすると重くない？

Solid Queue 速すぎて過負荷になった問題

原因は DB の高負荷

Solid Queue 速すぎて過負荷になった問題

原因は DB の高負荷

Solid Queue 速すぎて過負荷になった問題

原因は DB の高負荷

Solid Queue 速すぎて過負荷になった問題

原因は

Solid Queue 速すぎて過負荷になった問題

原因は

Solid Queue

DB

Solid Queue Solid Queue

Solid Queue 速すぎて過負荷になった問題

Queue DB

Solid Queue

DB

Solid Queue Solid Queue

Solid Queue 速すぎて過負荷になった問題
原因は重量級ジョブが大量に並列実行されるようになったこと

Queue DB

Solid Queue

DB

Solid Queue Solid Queue

すごいクエリのジョブがいっぱいきたので処理したろか

Solid Queue 速すぎて過負荷になった問題
原因は重量級ジョブが大量に並列実行されるようになったこと

Queue DB

Solid Queue

DB

Solid Queue

処理 Worker とプロセスも上がり Solid Queue 処理速度は Delayed の 40倍や！

Solid Queue

すごいクエリのジョブがいっぱいきたので処理したろか

Solid Queue 速すぎて過負荷になった問題
原因は重量級ジョブが大量に並列実行されるようになったこと

Queue DB

Solid Queue

DB

Solid Queue Solid Queue

すごいクエリのジョブがいっぱいきたので処理したろか

処理実行！

Solid Queue 速すぎて過負荷になった問題
原因は重量級ジョブが大量に並列実行されるようになったこと

Queue DB

Solid Queue

DB

Solid Queue Solid Queue

すごいクエリのジョブがいっぱいきたので処理したろか

処理実行！

激重クエリ大量実行！

Solid Queue 速すぎて過負荷になった問題
原因は重量級ジョブが大量に並列実行されるようになったこと

Queue DB

Solid Queue

DB

Solid Queue Solid Queue

すごいクエリのジョブがいっぱいきたので処理したろか

処理実行！

激重クエリ大量実行！

Solid Queue 速すぎて過負荷になった問題
原因は重量級ジョブが大量に並列実行されるようになったこと

メインの DB が過負荷
Queue DB

Solid Queue 速すぎて過負荷になった問題

Solid Queue 速すぎて過負荷になった問題

復旧優先のため、重いやつ専用 Worker / 専用キューを作った

シングルプロセス / シングルスレッドの流れてきても並列しない用

Solid Queue 速すぎて過負荷になった問題

復旧優先のため、重いやつ専用 Worker / 専用キューを作った

シングルプロセス / シングルスレッドの流れてきても並列しない用

Solid Queue のいいところを全部潰した対応をしました

Solid Queue 速すぎて過負荷になった問題

復旧優先のため、重いやつ専用 Worker / 専用キューを作った

シングルプロセス / シングルスレッドの流れてきても並列しない用

Solid Queue のいいところを全部潰した対応をしました

Rosa さんごめんなさい

Migration Requirements
.delayメソッドの撲滅

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

監視

SolidQueue を利用するように全 Job を変更

gem uninstall delayed⬜

✅

✅

✅

✅

✅

Datadog / Delayed 監視ダッシュボード

Datadog / Delayed 監視ダッシュボード

Datadog / Delayed 監視ダッシュボード

No
Enqueue!

7 years ago...

Migration Requirements
.delayメソッドの撲滅

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

監視

SolidQueue を利用するように全 Job を変更

gem uninstall delayed

✅

✅

✅

✅

✅

✅

Migration Requirements
.delayメソッドの撲滅

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

監視

SolidQueue を利用するように全 Job を変更

gem uninstall delayed

✅

✅

✅

✅

✅

✅

完了だぜ！🚀

結果！
パフォーマンスとスケーラビリティの向上

柔軟なジョブ管理と優先制御

開発と運用の効率化

綺麗に線形にスケールアウトできるようにしたい

処理できるジョブの数を増やしたい
リソースを有効活用したい

優先度を定義したら優先度を守ってほしい
ジョブごとにキューと Worker を分けたい
定期実行処理をまとめたい

 ActiveJob に移行したい（ Delayed 専用の書き方と ActiveJob の混在廃止）

できるだけ Rails Way に乗せたい

✅

✅

✅

✅

✅

✅

✅

⬜ （←これは今年やる予定！！）

• はじめに： Teachme Biz について
• 移行前の課題
• 選定
• 設計と実装
• 移行後の課題
• まとめ

実装だけは多分楽
Claude Code 使えばもっと早かっ（略）

AI で効率のよいエンジニアリングができる現代だからこそ

Solid Queue の内部実装を理解すること
Solid Queue に合わせた設計 ~ リリース計画が超大事

AI で効率のよいエンジニアリングができる現代だからこそ

Solid Queue の内部実装を理解すること
Solid Queue に合わせた設計 ~ リリース計画が超大事

Delayed にあって Solid Queue にないものはあるか

AI で効率のよいエンジニアリングができる現代だからこそ

Solid Queue の内部実装を理解すること
Solid Queue に合わせた設計 ~ リリース計画が超大事

Delayed にあって Solid Queue にないものはあるか

Solid Queue に変更することで影響ある機能・チームはどこか

AI で効率のよいエンジニアリングができる現代だからこそ

Solid Queue の内部実装を理解すること
Solid Queue に合わせた設計 ~ リリース計画が超大事

Delayed にあって Solid Queue にないものはあるか

Solid Queue に変更することで影響ある機能・チームはどこか

現状の課題を解決できるものかどうか

AI で効率のよいエンジニアリングができる現代だからこそ

Solid Queue の内部実装を理解すること
Solid Queue に合わせた設計 ~ リリース計画が超大事

Delayed にあって Solid Queue にないものはあるか

Solid Queue に変更することで影響ある機能・チームはどこか

現状の課題を解決できるものかどうか

監視の計画する

AI で効率のよいエンジニアリングができる現代だからこそ

Solid Queue の内部実装を理解すること
Solid Queue に合わせた設計 ~ リリース計画が超大事

Delayed にあって Solid Queue にないものはあるか

Solid Queue に変更することで影響ある機能・チームはどこか

現状の課題を解決できるものかどうか

監視の計画する

障害を起こさないように段階的なリリース計画をする

AI で効率のよいエンジニアリングができる現代だからこそ

最後に弊社 EM より
「全ての技術的負債と呼ばれるものは

その時の全力であることは間違いないし、

そう信じて前進していきたい」

One More Thing

仕事探しているそこの君！

https://open.talentio.com/r/1/c/studist-recruit/pages/29489

仕事探しているそこの君！

スタディストの SRE は君を待ってるぜ！

私たちの旅路は
続くんだぜ！

ご清聴ありがとうございました！

私たちの旅路は
続くんだぜ！

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292

