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and all the things in between
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リリース 10 年以上の Rails アプリケーション

2012 年リリース Rails3.2.1 -> 2024 年 10 月当時 Rails7.1
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非同期処理の簡単なおさらい

1. ユーザが操作する

2. DB に処理がエンキューされる

3. ユーザにレスポンスが返される

4. 非同期バックエンドが処理

5. 処理結果を DB に保存して完了



重要な処理＝非同期処理が多い

初期マニュアル作成

Chatbot で Chat 開始

フォルダの人数計算

各種情報更新後メール送信

顧客情報削除処理

AI を使った自動生成

動画・ PDF からマニュアル作成

非同期処理基盤
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線形的なスケールアウト不可能問題

本（処理）がたくさん売れる（入る）から 

店員（処理プロセス）を 1 人から 2 人にしたのに…

2 倍じゃねえ！
2 人にしたのにお客さんを捌くスピードが…

電卓は一個しかねえぞ！！！
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Delayed Delayed

線形的なスケールアウト不可能問題
ジョブがいっぱいあるのでいっぱい処理したい

x

処理実行！ 
他の worker は待つ。
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Worker B
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線形的なスケールアウト不可能問題
Job Table START TRANSACTION; 

SELECT * FROM JOBS WHERE processed='no' FOR UPDATE LIMIT 1; 
-- xxxxx 
COMMIT 

「空いてるジョブを 1 つロックして、俺にくれ！」

「ロックされてるから、待つか……」

「空いてるジョブを 1 つロックして、俺にくれ！」

Transaction が commit されるまで JobB をとりにいかず、待ち worker になる

= Worker を増やしても、ジョブの処理速度が綺麗に倍になってくれない
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定期処理管理
Whenever -> デプロイ時に crontab 作成

ジョブのキュー
DB in MySQL8

SRE チームで合意した方針
運用対象は増やさない & 運用対象は極力減らす
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Sidekiq Pro

用途に応じて複数のキュー管理が可能

新しい AWS リソースが不要

線形スケールアウト可能

DB ロックでパフォーマンス劣化しない

Rails との親和性

定期実行処理基盤がある

無課金で使いたい

✅

✅

✅

✅

✅

⬜ 

⬜ 

⬜ 

ジョブのトランザクション内呼び出し対応
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めっちゃ強力 Batches 機能

たくさんのジョブ 1 まとめ実行で、大量データも安全・安心処理

複数のジョブを一つのトランザクションとして扱えるJob Failures 

ジョブが失敗した時に自動的にリトライするReliable Queues 

失敗しても安心設計だぜ！

ジョブの実行順序を細かく制御できる Unique Jobs 

特定の時間までジョブの実行を遅らせるScheduled Jobs
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新しい AWS リソースが必要

秘めたる力を完璧に使いこなすには大量にある ActiveJob バッチの書き換えがいる

お金！

Valkey or Redis が必要

ActiveJob だと全ての機能を使いきれない

有料！
⬜ 

⬜ 

⬜ 



SolidQueue

用途に応じて複数のキュー管理が可能

新しい AWS リソースが不要

線形スケールアウト可能

DB ロックでパフォーマンス劣化しない

Rails との親和性

定期実行処理基盤がある

ジョブのトランザクション内呼び出し対応

無課金で使いたい

✅

✅

✅

✅

✅

✅

✅

✅
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Solid Queue のいいところ . 2

運用・インフラストラクチャの効率化

既存の Aurora インスタンスに新しく create database するだけ 

新しいインフラリソースが不要

✅

持ち物が増えない
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Solid Queue の物足りないところ 

監視機能がないんだぜ
自前でなんとかしろスタイル

⬜ 



とりあえず見た感じやりたいこと全部解決してくれそう
パフォーマンスとスケーラビリティの向上

柔軟なジョブ管理と優先制御

開発と運用の効率化

綺麗に線形にスケールアウトできるようにしたい

処理できるジョブの数を増やしたい
リソースを有効活用したい

優先度を定義したら優先度を守ってほしい
ジョブごとにキューと Worker を分けたい
定期実行処理をまとめたい

 ActiveJob に移行したい（ Delayed 専用の書き方と ActiveJob の混在廃止）

できるだけ Rails 標準機能に寄せたい

✅

✅

✅

✅

✅
✅

✅

✅
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どうして必要 ?
Solid Queue の内部実装の理解

監視

パフォーマンス・チューニング

障害対応とトラブルシューティング

DB 構成を把握し、クエリを投げてメトリクス取得する

ジョブの処理するフローを理解しワーカープロセス数などの調節

DB 構成とジョブ処理フローを理解しトラブルを未然に防いだり 
発生時に素早く対応できるようにしておく
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scheduled_execution

claimed_execution failed_execution

全体図（間に色々あるけど主要なものだけ）
ジョブがエンキューされると入るテーブル



job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

全体図（間に色々あるけど主要なものだけ）

ジョブがスケジューリングされると 
入るテーブル



job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

全体図（間に色々あるけど主要なものだけ）

実行準備 OK になると 
入るテーブル



job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

全体図（間に色々あるけど主要なものだけ）

実行中になると 
入るテーブル



job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

全体図（間に色々あるけど主要なものだけ）

ジョブが失敗すると 
入るテーブル
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scheduled_execution
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すぐ実行したいジョブの場合
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claimed_execution failed_execution

監視時はそれぞれのテーブルを頭に入れてクエリを書く



job

ready_execution

Solid Queue の内部実装の理解

scheduled_execution

claimed_execution failed_execution

監視時はそれぞれのテーブルを頭に入れてクエリを書く

トラブル時はどこに実行したジョブのデータが入っているかで現状がわかる



Solid Queue で解決する線形スケールアウト
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Job Table

「空いてるジョブを 1 つロックして、俺にくれ！」

START TRANSACTION; 

SELECT * FROM jobs̲ table FOR UPDATE SKIP LOCKED LIMIT 1; 

  ----------- 

COMMIT
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Job A

Worker A

Worker B

Job B

Job C

Solid Queue で解決する線形スケールアウト
Job Table

「空いてるジョブを 1 つロックして、俺にくれ！」

「空いてるジョブを 1 つロックして、俺にくれ！ 
    ただし、誰かがロックしているジョブなら無視していいぜ！」

START TRANSACTION; 

SELECT * FROM jobs̲ table FOR UPDATE SKIP LOCKED LIMIT 1; 

  ----------- 

COMMIT
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Solid Queue の線形的なスケールアウト

本（処理）がたくさん売れる（入る）から 

店員（処理プロセス）を 1 人から 2 人にした

倍だぜ！
待ち時間ロックされないのでお客さんを捌くスピードが…

電卓を二つ用意して、お客さんは 

空いている方に行ってもらうよ



• はじめに： Teachme Biz について 
• 課題 Part その 1 
• 選定 
• 設計と実装そして移行 
• 課題 Part その 2 
• まとめ



移行手順
Delayed固有メソッドの撲滅

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

⬜ 

⬜ 

⬜ 

監視

SolidQueue を利用するように全 Job を変更

⬜ 

⬜ 

gem uninstall delayed⬜ 



ActiveJob で明示的に Delayed を指定

SolidQueue 設定

⬜ 

⬜ 

⬜ 

監視

SolidQueue を利用するように全 Job を変更

⬜ 

⬜ 

gem uninstall delayed⬜ 

Delayed固有メソッドの撲滅
移行手順
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".delay" Method

TestClass.delay.send_mail

delayed_jobs Table

処理開始！ Go!

      TestClass.delay.send_mail( user_id: user.id)
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      TestClass.delay.send_mail( user_id: user.id)

".delay" Method

Pros

•シンプルで分かりやすい、直感的

•ActiveRecordのモデルと相性が良い

Cons

•キュー指定が不可

•優先度を細かく指定が難しい

•Delayed に依存した書き方になってしまう

Delayed からのがれられない……



ActiveJob で明示的に Delayed を指定

SolidQueue 設定

監視

SolidQueue を利用するように全 Job を変更

⬜ 

⬜ 

⬜ 

gem uninstall delayed⬜ 

✅

⬜ 
Delayed固有メソッドの撲滅

移行手順
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ActiveJob で明示的に Delayed指定

class TestClassJob < ApplicationJob 
  self.queue_adapter = :delayed 
 queue_as :mail 

  def perform(user_id:) 
    # ~~~~~ 
  end 
end 

SolidQueue を install しても Delayed で動作

移行中 SolidQueue関連の PR をマージしても 

稼働中システムには影響なし！

      TestClass.delay.send_mail(  
           user_id: user.id 
       )



ActiveJob で明示的に Delayed を指定

SolidQueue 設定

監視

SolidQueue を利用するように全 Job を変更

⬜ 

⬜ 

⬜ 

gem uninstall delayed⬜ 

✅

✅

Delayed固有メソッドの撲滅
移行手順



Solid Queue Configuration

production: 
  dispatchers: 
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Dispatcher
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Solid Queue Configuration

production: 
  dispatchers: 
    - polling_interval: 1 
      batch_size: 500 
  workers: 
    - queues: "default" 
      threads: 2 
      processes: 5 
      polling_interval: 5 
    - queues: "mail" 
      threads: 2 
      processes: 5 
      polling_interval: 1

config/solid_queue/queue_config.yml
Dispatcher

solid̲ queue̲ jobs solid̲ queue̲ ready̲ executions

worker:default worker: mail



Solid Queue Configuration:2

production: 
  dispatchers: 
    - polling_interval: 1 
      batch_size: 500 
  workers: 
    - queues: "default" 
      threads: 2 
      processes: 5 
      polling_interval: 5 
    - queues: "mail" 
      threads: 2 
      processes: 5 
      polling_interval: 1

config/solid_queue/queue_config.yml



Solid Queue Configuration:2

通常のジョブ

production: 
  dispatchers: 
    - polling_interval: 1 
      batch_size: 500 
  workers: 
    - queues: "default" 
      threads: 2 
      processes: 5 
      polling_interval: 5 
    - queues: "mail" 
      threads: 2 
      processes: 5 
      polling_interval: 1

config/solid_queue/queue_config.yml



Solid Queue Configuration:2

通常のジョブ

メール送信用

production: 
  dispatchers: 
    - polling_interval: 1 
      batch_size: 500 
  workers: 
    - queues: "default" 
      threads: 2 
      processes: 5 
      polling_interval: 5 
    - queues: "mail" 
      threads: 2 
      processes: 5 
      polling_interval: 1

config/solid_queue/queue_config.yml



config.solid_queue.use_skip_locked = true 

config.solid_queue.shutdown_timeout = 600.seconds 

config.solid_queue.silence_polling = true 

config.solid_queue.preserve_finished_jobs = false

Solid Queue Configuration3

config/initializers/solid_queue.rb
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config.solid_queue.use_skip_locked = true 

config.solid_queue.shutdown_timeout = 600.seconds 

config.solid_queue.silence_polling = true 

config.solid_queue.preserve_finished_jobs = false

Solid Queue Configuration3

UPDATE SKIP LOCKED を使う

プロセスに TERM シグナル送信後プロセス終了までの時間（ 10分）

ワーカーとディスパッチャをポーリングするときの Active Record ログを抑制する

完了したジョブをテーブルに残さない

config/initializers/solid_queue.rb
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Web Pod Solid Queue (Main)

Solid Queue Infrastructure(After)

main 
DB

Queue 
DB

EKS



.delayメソッドの撲滅

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

監視

SolidQueue を利用するように全 Job を変更

⬜ 

⬜ 

gem uninstall delayed⬜ 

✅

✅

✅

移行手順



Migration Requirements
.delayメソッドの撲滅

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

監視

SolidQueue を利用するように全 Job を変更

⬜ 

⬜ 

gem uninstall delayed⬜ 

✅

✅

✅



監視するぞ！ (delayed編 )
• delayed.job.count - ジョブの総数 

• delayed.job.future_count -未来に実行されるジョブの数 

• delayed.job.working_count - 現在処理中のジョブ数 

• delayed.job.workable_count - 処理待ちのジョブ 

• delayed.job.erroring_count - 実行に失敗したジョブ（失敗回数が 1回以上） 

• delayed.job.failed_count - 最終的に失敗したジョブ（もうリトライできない） 

• delayed.job.max_lock_age - ずっとロックされ続けているジョブ 

• delayed.job.max_age - 最も古いジョブの経過時間 

•

Delayed の機能として 

提供されてるんだぜ！



監視するぞ！ (Solid Queue編 )
• job.count - ジョブの総数 

• job.future_count -未来に実行されるジョブの数 

• job.working_count - 現在処理中のジョブ数 

• job.workable_count - 処理待ちのジョブ 

• job.erroring_count - 実行に失敗したジョブ（失敗回数が 1回以上） 

• job.failed_count - 最終的に失敗したジョブ（もうリトライできない） 

• job.max_lock_age - ずっとロックされ続けているジョブ 

• job.max_age - 最も古いジョブの経過時間 

•



監視するぞ！ (Solid Queue編 )
• job.count - ジョブの総数 

• job.future_count -未来に実行されるジョブの数 

• job.working_count - 現在処理中のジョブ数 

• job.workable_count - 処理待ちのジョブ 

• job.erroring_count - 実行に失敗したジョブ（失敗回数が 1回以上） 

• job.failed_count - 最終的に失敗したジョブ（もうリトライできない） 

• job.max_lock_age - ずっとロックされ続けているジョブ 

• job.max_age - 最も古いジョブの経過時間 

•

Solid Queue の機能として 

提供されていないぜ！



監視するぞ！ (Solid Queue編 )

自前実装しました！



監視するぞ！ (Solid Queue編 )

自前実装しました！



監視するぞ！ (Solid Queue編 )



メトリクス名 解説

future_count 将来実行されるジョブの数。特定の時刻に実行がスケジュ
ールされているジョブの合計

workable_count 処理待ちのジョブの数。ワーカーにいつでも実行してもら
える状態のジョブの合計

working_count 現在処理中のジョブの数。ワーカーが今まさに動かしてい
るジョブの合計

retry_count 再実行を待っているジョブの数。一度失敗して、リトライ
処理が設定されているジョブの合計

監視するぞ！ (Solid Queue編 )
キューの状態メトリクス



メトリクス名 解説

future_count 将来実行されるジョブの数。特定の時刻に実行がスケジュ
ールされているジョブの合計

workable_count 処理待ちのジョブの数。ワーカーにいつでも実行してもら
える状態のジョブの合計

working_count 現在処理中のジョブの数。ワーカーが今まさに動かしてい
るジョブの合計

retry_count 再実行を待っているジョブの数。一度失敗して、リトライ
処理が設定されているジョブの合計

監視するぞ！ (Solid Queue編 )

メトリクス名 解説

throughput_rate 直近 1 分間に処理が完了したジョブの数

max_age 最長待機時間。最も長く待っているジョブの経過時間

median_wait_time 待機時間の中央値

max_lock_age 最長実行。

average_lock_age 平均実行時間。実行中のジョブの平均的な処理時間

キューの状態メトリクス

パフォーマンスメトリクス



メトリクス名 解説

future_count 将来実行されるジョブの数。特定の時刻に実行がスケジュ
ールされているジョブの合計

workable_count 処理待ちのジョブの数。ワーカーにいつでも実行してもら
える状態のジョブの合計

working_count 現在処理中のジョブの数。ワーカーが今まさに動かしてい
るジョブの合計

retry_count 再実行を待っているジョブの数。一度失敗して、リトライ
処理が設定されているジョブの合計

監視するぞ！ (Solid Queue編 )

メトリクス名 解説

throughput_rate 直近 1 分間に処理が完了したジョブの数

max_age 最長待機時間。最も長く待っているジョブの経過時間

median_wait_time 待機時間の中央値

max_lock_age 最長実行。

average_lock_age 平均実行時間。実行中のジョブの平均的な処理時間

キューの状態メトリクス

パフォーマンスメトリクス

メトリクス名 解説

erroring_count エラー付きで失敗したジョブの数。エラーメッセージが付いている
失敗ジョブの合計。

failed_count 直近1時間で失敗したジョブの総数。エラーの有無を問わず、失敗し
たジョブの合計。

stale_jobs_count 停滞しているジョブの数。長時間（1時間以上）実行中のジョブで、
デッドロックや無限ループの可能性。

error_rate エラー率。直近1時間の全ジョブのうち、エラーで失敗した割合。

worker_utilization ワーカーの使用率。割り当てられたワーカーがどれだけ働いている
かの割合。

alert_age_percent アラート閾値比率だ。優先度を考慮した待機時間が、事前に設定し
た閾値にどれだけ近づいているかを示す割合。

エラーアラートメトリクス





Migration Requirements
.delayメソッドの撲滅

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

監視

SolidQueue を利用するように全 Job を変更⬜ 

gem uninstall delayed⬜ 

✅

✅

✅

✅



Delayed -> SolidQueue! 



Delayed -> SolidQueue! 
class TestClassJob < ApplicationJob 
  self.queue_adapter = :delayed 
 queue_as :mail 

  def perform(user_id:) 
    # ~~~~~ 
  end 
end 



Delayed -> SolidQueue! 
class TestClassJob < ApplicationJob 
  self.queue_adapter = :delayed 
 queue_as :mail 

  def perform(user_id:) 
    # ~~~~~ 
  end 
end 

class TestClassJob < ApplicationJob 
  self.queue_adapter = :solid_queue 
 queue_as :mail 

  def perform(user_id:) 
    # ~~~~~ 
  end 
end 



Delayed -> SolidQueue! 

delayed -> solid̲ queue に変更！

class TestClassJob < ApplicationJob 
  self.queue_adapter = :delayed 
 queue_as :mail 

  def perform(user_id:) 
    # ~~~~~ 
  end 
end 

class TestClassJob < ApplicationJob 
  self.queue_adapter = :solid_queue 
 queue_as :mail 

  def perform(user_id:) 
    # ~~~~~ 
  end 
end 



Delayed -> SolidQueue! 

delayed -> solid̲ queue に変更！

x Jobs Count

class TestClassJob < ApplicationJob 
  self.queue_adapter = :delayed 
 queue_as :mail 

  def perform(user_id:) 
    # ~~~~~ 
  end 
end 

class TestClassJob < ApplicationJob 
  self.queue_adapter = :solid_queue 
 queue_as :mail 

  def perform(user_id:) 
    # ~~~~~ 
  end 
end 





2025/3/5 完全移行作業！ done!



2025/3/5 完全移行作業！ done!

やったか !？



Migration Requirements
.delayメソッドの撲滅

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

監視

SolidQueue を利用するように全 Job を変更

gem uninstall delayed⬜ 

✅

✅

✅

✅

⬜ 

できてないぜ！



• はじめに： Teachme Biz について 
• 課題 Part1 （移行前） 
• 選定 
• 設計と実装 
• 移行 
• 課題 Part2( 移行後 ) 
• まとめ



enqueue̲ after̲ transaction̲ commit 効いてない問題



2012 年リリース Rails3.2.1 -> 2025 年 3 月当時 Rails7.1

enqueue_after_transaction_commit 設定されてなくない？



enqueue̲ after̲ transaction̲ commit とは



enqueue̲ after̲ transaction̲ commit とは

DB のトランザクション整合性を有効にできるオプション。



enqueue̲ after̲ transaction̲ commit とは

DB のトランザクション整合性を有効にできるオプション。

class ApplicationJob < ActiveJob::Base 

  self.enqueue_after_transaction_commit = true 

end 



enqueue_after_transaction_commit は Rails7.2 から

用途に応じて複数のキュー管理が可能

新しい AWS リソースが不要

線形スケールアウト可能

DB ロックでパフォーマンス劣化しない

Rails との親和性

定期実行処理基盤がある

トランザクション内呼び出し対応

無課金で使いたい

✅

✅

✅

✅

✅

✅

✅

✅



2012 年リリース Rails3.2.1 -> 2025 年 3 月当時 Rails7.1

enqueue_after_transaction_commit....？



ActiveRecord::Base.transaction do 

  user = User.create!(name: " 新しいユーザー ")  

  WelcomeEmailJob.perform_later(user.id)  

  raise "Something went wrong!"  

end

トランザクション内部に書かれたジョブ問題 1



ActiveRecord::Base.transaction do 

  user = User.create!(name: " 新しいユーザー ")  

  WelcomeEmailJob.perform_later(user.id)  

  raise "Something went wrong!"  

end

トランザクション内部に書かれたジョブ問題 1
ユーザを DB に保存（未コミット）
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ActiveRecord::Base.transaction do 

  user = User.create!(name: " 新しいユーザー ")  

  WelcomeEmailJob.perform_later(user.id)  

  raise "Something went wrong!"  

end

トランザクション内部に書かれたジョブ問題 1
ユーザを DB に保存（未コミット）

ジョブをキューに入れる

ジョブはユーザが作成済み前提で実行

呼び出し元メソッドで例外発生



ActiveRecord::Base.transaction do 

  user = User.create!(name: " 新しいユーザー ")  

  WelcomeEmailJob.perform_later(user.id)  

  raise "Something went wrong!"  

end

トランザクション内部に書かれたジョブ問題 1
ユーザを DB に保存（未コミット）

ジョブをキューに入れる

ジョブはユーザが作成済み前提で実行

呼び出し元メソッドで例外発生

user がないのに 
処理実行される！！



Web Pod Delayed Pod

トランザクション内部に書かれたジョブ問題 2
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DB
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2. トランザクション開始＆ユーザ作成

3. ジョブをエンキュー（未コミット）



Web Pod Delayed Pod

トランザクション内部に書かれたジョブ問題 2

EKS

main 
DB

1. Web にアクセスがある

2. トランザクション開始＆ユーザ作成

3. ジョブをエンキュー（未コミット）

コミットしない限り worker は 
ジョブを取得不可能

x
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Web Pod Solid Queue (Main)

main 
DB

Queue 
DB

EKS

トランザクション内部に書かれたジョブ問題 2

1. Web にアクセスがある

2. トランザクション開始

3. 処理の DB保存処理（未コミット）

4. キュー DB にキューがはいる

main DB のコミット状況は QueueDB は知ったことではない

5.Worker が取得に行く



Web Pod Solid Queue (Main)

main 
DB

Queue 
DB

EKS

トランザクション内部に書かれたジョブ問題 2

1. Web にアクセスがある

2. トランザクション開始

3. 処理の DB保存処理（未コミット）

4. キュー DB にキューがはいる

main DB のコミット状況は QueueDB は知ったことではない

5.Worker が取得に行く

6.コミット前にジョブが実行される



解決法トランザクション内部に書かれたジョブ問題



解決法トランザクション内部に書かれたジョブ問題
enqueue̲ after̲ transaction̲ commit を使えるようにする！



ActiveRecord::Base.transaction do 

  user = User.create!(name: " 新しいユーザー ")  

  WelcomeEmailJob.perform_later(user.id)  

  raise "Something went wrong!"  

end
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ActiveRecord::Base.transaction do 

  user = User.create!(name: " 新しいユーザー ")  

  WelcomeEmailJob.perform_later(user.id)  

  raise "Something went wrong!"  

end
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ActiveRecord::Base.transaction do 

  user = User.create!(name: " 新しいユーザー ")  

  WelcomeEmailJob.perform_later(user.id)  

  raise "Something went wrong!"  

end

解決法トランザクション内部に書かれたジョブ問題
ユーザを DB に保存（未コミット）

非同期処理がよばれる 
（エンキューされない）

enqueue̲ after̲ transaction̲ commit を使えるようにする！

ユーザは保存されない 
（ DB にコミットされない）

成功しなかったので 
最終的にもエンキューされない！

呼び出し元メソッドで例外発生
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トランザクション内部に書かれたジョブ問題
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トランザクション内部に書かれたジョブ問題

before̲ xxx / after̲ xxxx に書かれたもの

明示的に transaction で囲まれたもの

Teachme Biz にはあるのか？



トランザクション内部に書かれたジョブ問題

before̲ xxx / after̲ xxxx に書かれたもの

Rails あげるか！！
明示的に transaction で囲まれたもの

Teachme Biz にはあるのか？



あげました！



Transaction 完了前に 
エンキューさせて 
実行して欲しい場合はどうするの？



Transaction 完了前に 
エンキューさせて 
実行して欲しい場合はどうするの？設計を見直して
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SolidQueue リリースから数日後

Solid Queue 速すぎて過負荷になった問題

重くない？

というかアクセスすると重くない？
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Solid Queue
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Solid Queue

処理 Worker とプロセスも上がり Solid Queue 処理速度は Delayed の 40倍や！

Solid Queue

すごいクエリのジョブがいっぱいきたので処理したろか
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激重クエリ大量実行！
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Solid Queue

DB

Solid Queue Solid Queue

すごいクエリのジョブがいっぱいきたので処理したろか

処理実行！ 

激重クエリ大量実行！

Solid Queue 速すぎて過負荷になった問題
原因は重量級ジョブが大量に並列実行されるようになったこと

メインの DB が過負荷
Queue DB
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Solid Queue 速すぎて過負荷になった問題

復旧優先のため、重いやつ専用 Worker / 専用キューを作った

シングルプロセス / シングルスレッドの流れてきても並列しない用

Solid Queue のいいところを全部潰した対応をしました

Rosa さんごめんなさい



Migration Requirements
.delayメソッドの撲滅

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

監視

SolidQueue を利用するように全 Job を変更

gem uninstall delayed⬜ 

✅

✅

✅

✅

✅
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Datadog / Delayed 監視ダッシュボード

No 
Enqueue!







7 years ago...



Migration Requirements
.delayメソッドの撲滅

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

監視

SolidQueue を利用するように全 Job を変更

gem uninstall delayed

✅

✅

✅

✅

✅

✅



Migration Requirements
.delayメソッドの撲滅

ActiveJob で明示的に Delayed を指定

SolidQueue 設定

監視

SolidQueue を利用するように全 Job を変更

gem uninstall delayed

✅

✅

✅

✅

✅

✅

完了だぜ！🚀



結果！
パフォーマンスとスケーラビリティの向上

柔軟なジョブ管理と優先制御

開発と運用の効率化

綺麗に線形にスケールアウトできるようにしたい

処理できるジョブの数を増やしたい
リソースを有効活用したい

優先度を定義したら優先度を守ってほしい
ジョブごとにキューと Worker を分けたい
定期実行処理をまとめたい

 ActiveJob に移行したい（ Delayed 専用の書き方と ActiveJob の混在廃止）

できるだけ Rails Way に乗せたい

✅

✅

✅

✅

✅

✅

✅

⬜ （←これは今年やる予定！！）



• はじめに： Teachme Biz について 
• 移行前の課題 
• 選定 
• 設計と実装 
• 移行後の課題  
• まとめ 



実装だけは多分楽 
Claude Code 使えばもっと早かっ（略）



AI で効率のよいエンジニアリングができる現代だからこそ
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Solid Queue の内部実装を理解すること 
Solid Queue に合わせた設計 ~ リリース計画が超大事

Delayed にあって Solid Queue にないものはあるか

Solid Queue に変更することで影響ある機能・チームはどこか

現状の課題を解決できるものかどうか

監視の計画する

障害を起こさないように段階的なリリース計画をする

AI で効率のよいエンジニアリングができる現代だからこそ



最後に弊社 EM より 
「全ての技術的負債と呼ばれるものは 

その時の全力であることは間違いないし、 

そう信じて前進していきたい」



One More Thing



仕事探しているそこの君！



https://open.talentio.com/r/1/c/studist-recruit/pages/29489

仕事探しているそこの君！

スタディストの SRE は君を待ってるぜ！



私たちの旅路は 
続くんだぜ！



ご清聴ありがとうございました！

私たちの旅路は 
続くんだぜ！
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