BRWERICHESARV - BEZ AL
1ERBIE DRt E ER
Kaigi on Rails 2025

@naro143 (Yusuke Ishimi)

QPLEX

{7‘ . Sponsor RubyStackNews

Reach senior Ruby & Rails engineers worldwide

Put your brand in front of experienced developers, tech leads,

and decision makers across the global Ruby ecosystem.

& Ruby Stack News ' Ruby Stack News

Reach hundreds
of Ruby & backend
candidates daily

Ruby Stack News connects
your company with
experienced developers
looking for meaningful

work.

=» Post a job on Ruby Stack News

Apply to curated
Ruby & Ruby on Rails jobs

Discover curated opportunities
from companies hiring a
experienced Ruby a

developers. el ”
a WK

Register on our job board

and unlock opportunities
for experienced developers.

|

Promote your job on Ruby Stack News Apply on our job board

#3007 A7 MAK

F%69,800/ T S
-U-7 WY tiﬁb%%iﬂ ¢ cmmamm Y ¢ :,s;:seﬁ;;\am

% 1000:mr & “1005ur &
S FILTEVLR T < BRED TR,
BREoMR(LLS, T YIS .

Yusuke Ishimi
s THALTHSD
A= A DAV AT

oy e

F5 418y U = CHEMICAED 5 2 CHAC KT 0

X @naro143) @naro143

QPLEX 2

BbhlF-o CWelEEiuwle

@ EREEODEEMETVFNT—2DIERRE
O ERBEDEEZZBEUICNE|TAZE TEFNEBECEEVDYRESES
® EAMNALREEN (SEDEBD T oMMFICHBNIEEWVTY)

QPLEX 3

R

EREBEOEEM

KL BBIRFEET VFINE— 2 EXFAGE
IEREBOEZDEIE (Pundit Zi2)
EEZZ BN EIL 7z Module DERED#ER
MEBDEEL T —EINDOFE

4

St
o
il
MR
e

QPLEX 5

1EFREIE DG

® EETHUYMITRHRBRIVHRERIINDS
@ EEFBETVAVVIZIFXIN—ZBFTES
@ ENM7Z>DTAI—H—1ITIREIIE R S

R ig SaaS 2 L ..
® EEEVAHVVIITIERDEHR (BUREPHES) HRND
® NE7 AUV EHES HEZo7O 7 FORHREITRENS (BXE[EIFRN

Y

QPLEX 6

VEREBIEDI X

LS FHLBY o
Bz L BE» o1

H—EXAANDEFEINTH S
HEANDIEEXIHAKTL

MEREIED I XIIFINAEL

LEa2—93FFHETRTLETL

QPLEX 11

L < HBERED

class ProjectsController < ApplicationController
def create
unless current_user.admin?

redirect_to root_path, alert: "#ERHINHBETI"
return
end

QPLEX 12

L < HBERED

class ProjectsController < ApplicationController
def create
unless current_user.manager?

redirect_to root_path, alert: "#ERHINHBETI"
return
end

QPLEX 13

L < HBERER

class ProjectsController < ApplicationController
def create
unless current_user.super_admin?

redirect_to root_path, alert: "#ERHINHBETI"
return
end

OPLEX v

BmATEL super_admin o T ...

ZH%H admin? OHIEIZE
TOFINE—

KENIZEDLDITL

QPLEX 17

=X —EXDTY
3

@ Y—7vhrdsmiy FE) DXL
@ Y—7vhEIBERMAROEN
@ Y—7Tvyhrdd31—-DENK

it

H$—p 2
® RMtT BN

QPLEX 18

EEESE CABIXED
BIEF LA LB CBF?

108 100 BDTEED
BIEE IR CEREEFE?

B L admin?

=BlICHTE L 72FIE X
VIOFINR—

&EUGDE%E%
W9 SHEE
X TL <

e, 1E&EEESIRIZEMIC B
LDOH. FIINEEICKSD

)7 o021)>0

QPLEX 25

L < HBERED

class ProjectsController < ApplicationController
def create
unless current_user.admin?

redirect_to root_path, alert: "#ERHINHBETI"
return
end

QPLEX 26

L < HBERED

class ProjectsController < Ap
def create
unless current_user.admin?

7O b Z{ERTETBDH?

redirect_to root_path, alert: "#ERHINHBETI"
return
end

QPLEX >

A2z b EERTE5DH?

DB 7RLY ..

admin? H5DZEEE
@ RLENMIFLI-EEIZ. ERHIBEMICKD

O LEa7—d BICKBIDERZHSEWVEWLIFAL

O FIEBFAAIDESIED. EDKDRIERDVERINTULDIDHAHOH 5%
@ RENIMFLICEEIF. ZWIZFEL

O REIDERMNEN LIRS, Z<DHEREMZRBZVEWITEL

O 1EROBEMZHRTH71-DIC. ZLOHAEEMZRBEVEWLIFAL

QPLEX 29

®EN TR ERICHKFET B

class ProjectsController < ApplicationController
def create
unless current_user.can_create_project?

redirect_to root_path, alert: "#ERHINHBETI"
return
end

QPLEX 30

®EN TR HERICHKFET S

-~ - 5
class ProjectsController < Ap AP hEFRTESDN

def create
unless current_user.can_create_project?

redirect_to root_path, alert: "#ERHINUNETT"
return
end

QPLEX 31

®EN TR ERICHKFET B

QPLEX

class User < ApplicationRecord

enum :role, [:admin, :manager

def can_create_project?
admin? || manager?
end
end

32

CNEITTH. TLIRRLARS

CCETHEA

& DR

H
7

St
v
MR
\1
~
i)
»
(|
(X

QPLEX 36

[EE 2 73 L)
1. RETHEEZAL
a. Bl. EEZTDLE
2. FIATHEEZRAL
a. MIBOHRTHEZTZHLE
3. HETHEZSGL
a. d—RU—FTa>JDLE
b. BELGHLEDERIZDE F

QPLEX 37

B2 R 78 L)

1. ERETHEEZRL

a. BN, EEZJI2 LT
2. FATHEEZAL

a. WIEBOHRTHIEZTHEE
3. IEMTHEEZGL

a. dA—RU—FTa42JDC=
b. HFEAWVWEHLEDOEZD YL = ERITSBVEHENZL

QPLEX ”

RBAC & ABAC

QPLEX 39

RBAC & ABAC

RBAC Role-Based Access Control)
® EETHUVE
® EEEVHVVE
® INBTAHATTE
ABAC Attribute-Based Access Control

® fEpE
® BHE

QPLEX 20

RBAC & ABAC

RBAC Role-Based Access Control)

® EETHUVE
® BIEEVHAUUE
® T AIVE

FHF (IKFILSH

ABAC Attribute-Based Access Control

® fEpE
® BHE

QPLEX "

St
o
il
MR
e
~t

&
e

ERE

QPLEX "

By TEIE

® JOYzIVh-DEMII. BEENMEZERSTES]

QPLEX "

By TEIE

@ 7OV hDEMF. EEENMESELSTETB]

® HRD. EFIE. KEDFHFESTETS]

QPLEX "

By TEIE

@ 7OV hDEMF. EEENMESELSTETB]

® HRD. EFIE. KEDFHFESTETS]

® [Model @, CRUD {&. Role h* Scope 5 TE3]

QPLEX "

Kt

Pundit T

QPLEX 46

Pundit

class ProjectPolicy < ApplicationPolicy
def update?
user.admin? !! user.assignee_projects.exists?(project: record)
end

QPLEX 47

= VAV RGP oY 7S

O FOERIE.
""“_'EEH%b\

< — D
Ef%#ﬁﬁ%@%f%%

SNEBT A b I
CABBED TERL

Pundit

ss ProjectPolicy < ApplicationPolicy
update?
return false if user.external?

user.admin? || (user.manager? & (user.assignee_projects.exists?(proje record) || user.author_projects.exists?(record)))

end

QPLEX 50

Pundit

lef update?

f user.external?

user.admin? || (user.manager? && (user.assignee_projects.exists?(record) || user.author_projects.exists?(record)))

MBE1—Y—3d. 7Oz bOEMMNTETETH? J &
EHA N 5EIET BDICEMUBETTH?

QPLEX 51

FEfatArE L1chR?
5~10 # < 5 LVvHVZ

EHA N 5EIET SDICEMUBETTH?

EEDO—E X TIE
KD HFEITEMHICH S

EHA N 5EIET SDICEMUBETTH?

DO LTN\NyZOHRLRVDOD
EH N SEIET BDICRAMBETIH?

By TEIE

@ 7OV hDEMF. EEENMESELSTETB]

® HRD. EFIE. KEDFHFESTETS]

® [Model @, CRUD {&. Role h* Scope 5 TE3]

QPLEX 55

Pundit

if user.external?

user.admin? || (user.manager? && (user.assignee_projects.exists?(record) || user.author_projects.exists?(record)))

QPLEX 56

RBAC & ABAC

RBAC Role-Based Access Control)

® EETHUVE
® BIEEVHAUUE
® T AIVE

FHF (IKFILSH

ABAC Attribute-Based Access Control

® fEpE
® BHE

QPLEX 57

Pundit

if user.external?

user.admin? || (user.manager? && (user.assignee_projects.exists?(record) || user.author_projects.exists?(record)))

QPLEX 58

Pundit

if user.external?

user.admin? || (user.manager? && (user.assignee_projects.exists?(record) || user.author_projects.exists?(record)))

QPLEX 59

RENCFHFZDITELD

wfE

DD XL

s

Module Dt & EIE

QPLEX 62

module Policy
module Project
module Roles
ass Manager < Base

update
case mode
when

[:

when

assignee? || author?

when
author_or_assignee_scope
end
end
end
end
end

end

' 52
assignee? !! author? =
author_or_assignee_scope

Project / Manager
def update

assignee? | | author?

BRALmS bh-oT=Ale

HE Yy mIEEE A HhHINIEE

O - TCEIFLTLWAH
BTWEXxd

=

—_—
.

2.
3.
4.

QPLEX

> < D&

W5 L BEDSERD Y S X EHE
HEE— OISR

IRIES DRSS % 24T

KDY

69

LICENSE
policies
policy
base.rb
context.rb
event
base.rb
roles
admin.rb
external.rb
manager.rb
normal.rb
project
base.rb
roles
admin.rb
external.rb
manager.rb
normal.rb

policy.rb
README .md

QPLEX 70

QPLEX

LICENSE
policies
policy
base.rb
context.rb
event
base.rb
roles
admin.rb
external.rb
manager.rb
normal.rb
project
base.rb
roles
admin.rb
external.rb
manager.rb
normal.rb
policy.rb
README . md

TR

Model & 1 Xt 1

71

QPLEX

LICENSE
policies
policy
base.rb
context.rb
event
base.rb
roles
admin.rb
external.rb
manager.rb
normal.rb
project
base.rb
roles
admin.rb
external.rb
manager.rb
normal.rb
policy.rb
README . md

User @ role & 1 Xt 1

&E

72

LICENSE
policies
policy
base.rb
context.rb
event
base.rb
roles
admin.rb
external.rb
manager.rb
normal.rb

project
base.rb
roles
admin.rb
external.rb
manager.rb
normal.rb

policy.rb
README . md

QPLEX 73

LICENSE
policies
policy
base.rb
context.rb
event
base.rb
roles
admin.rb
external.rb
manager.rb
normal.rb
project
base.rb %%FF
roles
admin.rb
external.rb
manager.rb
normal.rb

policy.rb
README .md

OPLEX "

QPLEX

LICENSE
policies
policy
base.rb
context.rb
event
base.rb
roles
admin.rb
external.rb
manager.rb
normal.
project
base.rb
roles
admin.rb
external.rb
manager.rb
normal.rb
policy.rb
README . md

M

75

_ X TOHOEIE
@ XNRILICTA LI MUZER. ®EICEICT 71 ILZER
O ‘ENCEZHERDTS
® ERDIZADHFETAR IO I VJ =8
O 1EROEENES
@ XTRODEKZT S X T CRUD KM DIZIE%E BN
O XWRIEICER BIREDILRICHS
@ WRODEKRYVZATH#MEZEER. FMHZzHIEEE CHER
O ¥IEIFEZEBEBEELHLHNUL+7
O WRICK > TERBRZFHEDOHEICHTIE

QPLEX 76

LICENSE
policies
policy
base.rb
context.rb
event
base.rb
roles
admin.rb
external.rb
manager.rb
normal.rb
project
base.rb
roles
admin.rb
external.rb
manager.rb

policy.rb I R)=FRA>
README .md

QPLEX 77

module Policy

def self.authorize(user, record, action)
context = Context.new(user:)
context.authorize(record, action)

end

def self.authorize_scope(user, scope, action)
context = Context.new(user:)
context.authorize_scope(scope, action)

end

def self.permissions(user)
context = Context.new(
context.permissions

end

end

EAAY]

1. LO—KRICH L THERPHZ3HD%ZHIET S (record E—FK)

project = Project.find(1)

readable_project = Policy.authorize(current_user, project,

TR CAREDBBR SN TS &

QPLEX 79

EAAY]

2. ERD'H B L I— RDAHITKD AL (scope E—R)

projects = Project.all

readable_projects = Policy.authorize_scope(current_user, projects, :

R EBENBARIN TS &:

QPLEX 80

FELVH
3. "EEFRO—BZEE TS (list E—F)

permissions = Policy.permissions(current_user)

FICTSAT7MNIELTHERTS

module Policy

def self.authorize(user, record, acf

context = Context.new(user:) Context.new L TREE %= 1T

context.authorize(record, action)

end

def self.authorize_scope(user, scope, action)
context = Context.new(user:)
context.authorize_scope(scope, action)

end

def self.permissions(user)
context = Context.new(
context.permissions

end
'

ena

LICENSE
policies
policy
base.rb
context.rb ﬁﬁﬁ@ﬁ?Z’a’:ﬁE LT*UE‘E%??'B
event
base.rb
roles
admin.rb
external.rb
manager.rb
normal.rb
project
base.rb
roles
admin.rb
external.rb
manager.rb
normal.rb
policy.rb
README . md

QPLEX 83

module Policy
class Context

def authorize(record, action)
e(ArgumentError, 'record cannot be nil') unless record

policy = policy_class(user, record.class).new(user:, record:,

se(NotAuthorizedError, policy:, action:) unless policy.public_send(action.to_sym)

policy.record
end

def authorize_scope(scope, action)
(ArgumentError, 'scope cannot be nil') unless scope
(ArgumentError, 'scope must be ActiveRecord::Relation') unless scope.is_a?(ActiveRecord::Relation)

policy = policy_class(user, scope.klass).new(user:, scope:, mode: :scope)

policy.public_send(action.to_sym)
ena

def permissions
list = {}

policy_constants.each do |constant]
klass = policy_class(user, constant)

policy = klass.new(user:, mc 5)

constant_result = klass.public_instance_methods(false).each_with_object({}) do }method, result
result[method.to_sym] = policy.public_send(method)

end

list[constant.to_s.underscore.to_sym] = constant_result
end

list
end

def policy_class(user, record_class)
role = user.role.camelize

"Policy::#{record_class}::Roles::#{role}".safe_constantize ||} ise(NotDefinedError, co ass:, role:)
end

QPLEX i

module Policy
class Context

def authorize(record, action)
e(ArgumentError, 'record cannot be nil') unless record

policy = policy_class(user, record.class).new(user:, record:,

se(NotAuthorizedError, policy:, action:) unless policy.public_send(action.to_sym)

policy.record
end

def authorize_scope(scope, action)
(ArgumentError, 'scope cannot be nil') unless scope
(ArgumentError, 'scope must be ActiveRecord::Relation') unless scope.is_a?(ActiveRecord::Relation)

policy = policy_class(user, scope.klass).new(user:, scope:, mode: :scope)

policy.public_send(action.to_sym)
ena

def permissions
list = {}

policy_constants.each do |constant]
klass = policy_class(user, constant)

policy = klass.new(user:, mc 5)

constant_result = klass.public_instance_methods(false).each_with_object({}) do }method, result
result[method.to_sym] = policy.public_send(method)

end

list[constant.to_s.underscore.to_sym] = constant_result
end

list
end

def policy_class(user, record_class)
role = user.role.camelize

"Policy::#{record_class}::Roles::#{role}".safe_constantize ||} ise(NotDefinedError, co ass:, role:)
end

QPLEX i

YR EKZEIDS
policy_class(user, record_class) VEFRD Y S AZYET B

role = user.role.camelize

record_class}:: ::#{role}".safe_constantize }| (NotDefinedError, r

QPLEX 86

WREKZED S
def policy_class(user, record_class) EEDY S XERET S

role = user.role.camelize

"Policy::#{record_class}::Roles::#{role}".safe_constantize || raise(NotDefinedError, recc
end

module Policy
module Project
module Roles

class Manager < Base

def update

module Policy
class Context

def authorize(record, action)
e(ArgumentError, 'record cannot be nil') unless record

policy = policy_class(user, record.class).new(user:, record:,

se(NotAuthorizedError, policy:, action:) unless policy.public_send(action.to_sym)

policy.record
end

def authorize_scope(scope, action)
(ArgumentError, 'scope cannot be nil') unless scope
(ArgumentError, 'scope must be ActiveRecord::Relation') unless scope.is_a?(ActiveRecord::Relation)

policy = policy_class(user, scope.klass).new(user:, scope:, mode: :scope)

policy.public_send(action.to_sym)
ena

def permissions
list = {}

policy_constants.each do |constant]
klass = policy_class(user, constant)

policy = klass.new(user:, mc 5)

constant_result = klass.public_instance_methods(false).each_with_object({}) do }method, result
result[method.to_sym] = policy.public_send(method)

end

list[constant.to_s.underscore.to_sym] = constant_result
end

list
end

def policy_class(user, record_class)
role = user.role.camelize

"Policy::#{record_class}::Roles::#{role}".safe_constantize ||} ise(NotDefinedError, co ass:, role:)
end

QPLEX i

EAAY]

1. LO—KRICH L THERPHZ3HD%ZHIET S (record E—FK)

project = Project.find(1)

readable_project = Policy.authorize(current_user, project,

TR CAREDBBR SN TS &

QPLEX 89

def authorize(record, action) VERD U 5 X%

raise(ArgumentError, 'record cannot be nil') unless record record €— F T new

policy = policy_class(user, record.class).new(user:

raise(NotAuthorizedError, policy:, action:) unless policy.public_send(action.to_sym)

policy.record
end

QPLEX 90

def authorize(record, action) VERD Y S X%

aise(ArgumentError, ‘record cannot be nil') unless record record €— KT new

policy = policy_class(user, record.class).new(

aise(NotAuthorizedError, policy:, action:) unless policy.public_send(action.to_sym)

policy.record

end 1BRIER DT E1T

QPLEX 91

module Policy
class Context

def authorize(record, action)
e(ArgumentError, 'record cannot be nil') unless record

policy = policy_class(user, record.class).new(user:, record:,

se(NotAuthorizedError, policy:, action:) unless policy.public_send(action.to_sym)

policy.record
end

def authorize_scope(scope, action)
(ArgumentError, 'scope cannot be nil') unless scope
(ArgumentError, 'scope must be ActiveRecord::Relation') unless scope.is_a?(ActiveRecord::Relation)

policy = policy_class(user, scope.klass).new(user:, scope:, mode: :scope)

policy.public_send(action.to_sym)
ena

def permissions
list = {}

policy_constants.each do |constant]
klass = policy_class(user, constant)

policy = klass.new(user:, mc 5)

constant_result = klass.public_instance_methods(false).each_with_object({}) do }method, result
result[method.to_sym] = policy.public_send(method)

end

list[constant.to_s.underscore.to_sym] = constant_result
end

list
end

def policy_class(user, record_class)
role = user.role.camelize

"Policy::#{record_class}::Roles::#{role}".safe_constantize ||} ise(NotDefinedError, co ass:, role:)
end

QPLEX i

EAAY]

2. ERD'H B L I— RDAHITKD AL (scope E—R)

projects = Project.all

readable_projects = Policy.authorize_scope(current_user, projects, :

R EBENBARIN TS &:

QPLEX 93

def authorize_scope(scope, action)
‘aise(ArgumentError, 'scope cannot be nil') unless scope
raise(ArgumentError, 'scope must be ActiveRecord::Relation') unless scope.is_a?(ActiveRecord::Relation)

policy = policy_class(user, scope.klass).ne

policy.public_send(action.to_sym)

= ROV 5 2%
scope E— F T new

QPLEX 94

def authorize_scope(scope, action)
2 (ArgumentError, '
Lse(ArgumentError, 'c 8 MUS - on') unless .1s_a?(ActiveRecord: :Relation)

policy = policy_class(user, scope.klass).

policy.public_send(action.to_sym)

¥ERDY 5 X%
scope E— F T new

BRIER DR Z R1T

module Policy
class Context

def authorize(record, action)
e(ArgumentError, 'record cannot be nil') unless record

policy = policy_class(user, record.class).new(user:, record:,

se(NotAuthorizedError, policy:, action:) unless policy.public_send(action.to_sym)

policy.record
end

def authorize_scope(scope, action)
(ArgumentError, 'scope cannot be nil') unless scope
(ArgumentError, 'scope must be ActiveRecord::Relation') unless scope.is_a?(ActiveRecord::Relation)

policy = policy_class(user, scope.klass).new(user:, scope:, mode: :scope)

policy.public_send(action.to_sym)
ena

def permissions
list = {}

policy_constants.each do |constant]
klass = policy_class(user, constant)

policy = klass.new(user:, mc 5)

constant_result = klass.public_instance_methods(false).each_with_object({}) do }method, result
result[method.to_sym] = policy.public_send(method)

end

list[constant.to_s.underscore.to_sym] = constant_result
end

list
end

def policy_class(user, record_class)
role = user.role.camelize

"Policy::#{record_class}::Roles::#{role}".safe_constantize ||} ise(NotDefinedError, co ass:, role:)
end

QPLEX i

FELVH
3. "EEFRO—BZEE TS (list E—F)

permissions = Policy.permissions(current_user)

FICTSAT7MNIELTHERTS

def permissions
list = {}

policy_constants.each do |constant]
klass = policy_class(user, constant)
policy = klass.new(user:, mode: :1list)

constant_result = klass.public_instance_methods(false).each_with_object({}) do !method, result]
result[method.to_sym] = policy.public_send(method)
end

list[constant.to_s.underscore.to_sym] = constant_result
end

list
end

def policy_constants
reject_constants = [:Base, :Context, :Error, :NotAuthorizedError, :NotDefinedError]

Policy.constants.reject { |constant| reject_constants.include?(constant) }
end

def permissions
list = {}

policy_constants.each do |constant]
klass = policy_class(user, constant)
policy = klass.new(user:, mode: :1list)

constant_result = klass.public_instance_methods(false).each_with_object({}) do !method, result]
result[method.to_sym] = policy.public_send(method)
end

list[constant.to_s.underscore.to_sym] = constant_result
end

list
end

def policy_constants
reject_constants = [:Base, :Context, :Error, :NotAuthorizedError, :NotDefinedError]

Policy.constants.reject { |constant| reject_constants.include?(constant) }
end

def permissions
list = {}

policy_constants.each do |constant]
klass = policy_class(user, constant)
policy = klass.new(user:, mode: :list)

constant_result = klass.public_instance_methods(false).each_with_object({}) do |method, result]
result[method.to_sym] = policy.public_send(method)
end

list[constant.to_s.underscore.to_sym] = constant_result
end

list
end

def policy_constants
reject_constants = [:Base, :Context, :Error, :NotAuthorizedError, :NotDefinedError]

Policy.constants.reject { |constant]| reject_constants.include?(constant) }
end

_ X TOHOEIE
@ XNRILICTA LI MIZER. ®REICEICT 71 ILZER
O KENLEZHZERDTS
@ XZTIOJZI>J%iEH
O 1EROEENES
@ XTRODEKZT S X T CRUD KM DIZIE%E BN
O XWRIEICER BIREDILRICHS
@ WRODEKRYVZATH#MEZEER. FMHZzHIEEE CHER
O ¥IEIFEZEBEBEELHLHNUL+7
O WRICK > TERBRZFHEDOHEICHTIE

QPLEX 101

LICENSE
policies
policy
base.rb *EI‘E@EFEOEZ
context.rb
event
base.rb
roles
admin.rb
external.rb
manager.rb
normal.rb
project
base.rb
roles
admin.rb
external.rb
manager.rb
normal.rb
policy.rb
README . md

QPLEX 102

module Policy
class Base

def initialize(user:, record: , scope: , mode:
@user = user
@record = record
@scope = scope
@mode = mode

end

def read
(NotImplementedError)

end

def create
(NotImplementedError)

end

def update
(NotImplementedError)

end

def delete
a(NotImplementedError)
end
end

end

initialize(user:, record: , scope: , mode:

Quser = user AEICHELIFR
@ d = d e RS
escope = scape. HEDE— R

@mode = mode

read
(NotImplementedError)

create
(NotImplementedError)

update
(NotImplementedError)

end

lef delete
(NotImplementedError)

initialize(user:, record:

@user = user
@record = record
@scope = scope
@mode = mode

f read
(NotImplementedError)

create
(NotImplementedError)

update
(NotImplementedError)

delete
(NotImplementedError)

, scope:

, mode:

BEDOT 74 b LT CRUD ZEH

QPLEX

LICENSE
policies
policy
base.rb
context.rb
event
base.rb
roles
admin.rb
external.rb
manager.rb
normal.rb
project
base.rb
roles
admin.rb
external.rb
manager.rb
normal.rb
policy.rb
README . md

NROEEKT Z R

106

module Policy
module Project
class Base < Policy::Base
def author?
record.author == user
end

def assignee?
record.assignees.exists?(
end

def author_scope
scope.where(
end

def assignee_scope
scope.left_joins() .where(5 user }).distinct

end

def author_or_assignee_scope

base_scope = scope.left_joins()

base_scope.where(user).or(base_scope.where(user })).distinct
end

def view_settings_page
(NotImplementedError)
end
end

record.author == user
end record E— FRHOFHZEE

f assignee?
record.assignees.exists?(
end

author_scope
scope.where(
end

def assignee_scope
scope.left_joins() .where(user }).distinct

end

author_or_assignee_scope
base_scope = scope.left_joins()
base_scope.where(user).or(base_scope.where(user })).distinct

end

def view_settings_page
(NotImplementedError)

module Policy
module Project
class Base < Policy::Base
def author?
record.author == user

end scope E— FRDOFMAZER

def assignee?
record.assignees.exists?(1i
end

def author_scope
scope.where(
end

def assignee_scope
scope.left_joins(:as n) .where(assti user }).distinct
end

def author_or_assignee_scope

base_scope = scope.left_joins(:as n)

base_scope.where(: C user).or(base_scope.where(ass) d: user })).distinct
end

def view_settings_page
(NotImplementedError)
end
end

QPLEX 109

record.author == user
end

f assignee?
record.assignees.exists?(
end

author_scope
scope.where(
end

def assignee_scope
scope.left_joins() .where(user }).distinct

end

author_or_assignee_scope
base_scope = scope.left_joins()
base_scope.where(user).or(base_g

end

def view_settings_page CRUD Lxgl\o)%:éflﬁd)iahu

(NotImplementedError)

_ X TOHOEIE
@ WRILICTA LI M)ZER. KR CICT 71 ILZ1ERK
O KREICEHZRTS
@ MERDISADEFETAR OIS I VI %EMH
O KERDEENES
® XWRDERKY S X T CRUD LLIMNDIZRIEZ BN
O WRILICERDIRIEDILRICKIS
@ WRDERKY ZATHMUZzTER. FHZzmiEERETHEH
O HEIFHEBrRBEBEEHODHINIE+2
O WRICK > TEBRBDIFMHFDHEICHIL

111

QPLEX

QPLEX

LICENSE
policies
policy
base.rb
context.rb
event
base.rb
roles
admin.rb
external.rb

manager.rb
normal.rb

project

base.rb

roles
admin.rb
external.rb
manager.rb *EBEGDQMSO?Z
normal.rb

policy.rb
README . md

112

QPLEX

module Policy
module Project
module Roles
class Manager < Base

def update
case mode
when
[
when :
assignee? || author?

when
author_or_assignee_scope
end
end

def view_settings_page
case mode
when

when
when

scope
end

113

r HEOREY 52 TEEL &M
‘Ms'lgnee? Il author? %ﬁﬁﬁ L/T*U/F:E%%iﬁjé

author_or_assignee_scope

def view_settings_page
mode

FHELBZWIEEIT
Boolean #5229 %

[)]

assignee? || author?

author_or_assignee_scope

def view_settings_page

mode

WNROERKT 5 A TER LICFH
eERALTHEZRIRIT S

ZHEI B VEEIE
scope 7' scope.none 5k 3 3

BAMNALL O— RHARELRIE
or %D F—% 5T ﬁ?‘

assignee? || author?

author_or_assignee_scope

def view_settings_page

oo e KHEHBVEEIZ
Boolean 3¢ 7|<3'%

F view_settings_page
: mode

B g ED&HtS
E#RICEER

_ X TOHOEIE
@ XNRILICTA LI MUZERM. REICLICT 71 ILZERK
O KENLEZHZERDTS
® ERDIZADFETARTOT I >VJ % EH
O 1EROEENES
® WROEKY S X T CRUD LUIMNDIRIEZ BN
O XWRIEICER BIREDILRICHS
@ WNRDERKRYVSATH#HBEZEE. FHZzHIEEETHER
O ¥IEIFEZEBEBEELH OO NUI+7
O WRICK > TEBRDIFHDOHEICXTIE

118

QPLEX

=

—_—
.

2.
3.
4.

QPLEX

> < D&

W5 L BEDSERD Y S X EHE
HEE— OISR

IRIES DRSS % 24T

KDY

119

Q. [A=&

QPLEX 120

module Policy
module Report
module Roles
class External < Base
def approve
case mode
when :list

when :record
group_member? && (project_leader? || (reviewer? && !author?))
when :scor

end
end
end
end

end

end

QPLEX 121

module Policy TR
module Report
module Roles

. class External < Base
EE def approve

Pt
case mode &3
when :

i

when :recorc
group_member? && (project_leader? || (reviewer? && !author?))
when

end
end
end
end
end
end

QPLEX 122

KAt hhot-Al&

FHE 5 41T
SEVWEDEXIILTET XY

ERf!

QPLEX 125

clzsi F"rzjectsController < ApplicationControll read T3 projects (24 DA
ef index

projects = Project.all

@projects = Policy.authorize_scope(current_user, projects, :re

end

def update
project = Project.find(params[:id])

@project = Policy.authorize(current_user, project,

QPLEX 126

lass Projects i - ' tonControll 5 — 22 A S)
ch. s if’ro_,ects;éisntroller < ApplicationContro read T3 projects LD
def index
projects = Project.all

@projects = Policy.authorize_scope(current_user, projects,

end

update TZ 3 project H#I7E

def update
project = Project.find(params[:id])

@project = Policy.authorize(current_user, project,

QPLEX 127

class ProjectsController < ApplicationControll - — 22 N S) 4
=s d-" ‘ B read TE 3 projects IC&DIAD
def index

projects = Project.all

@projects = Policy.authorize_scope(current_user, projects,

update TZ 3 project H#I7E

def update
project = Project.find(params[:id])

@project = Policy.authorize(current_user, project,

MERRICHRTEL TUL\ B D TR
BRDTWICHEINLRL)

QPLEX 128

Ny Ehh B

assignee? |! author?

Ny Ehh B

author_or_assignee_scope

author?
record.author == user
end

f assignee?
record.assignees.exists?(user)
end

f author_scope
scope.where(
end

f assignee_scope
scope.left_joins() .where(user }).distinct

end

f author_or_assignee_scope
base_scope = scope.left_joins()
base_scope.where(user).or(base_scope.where(user })).distinct

view_settings_page
(NotImplementedError)

[EE 2 73 L)
1. RETHEEZAL
a. Bl. EEZTDLE
2. FIATHEEZRAL
a. MIBOHRTHEZTZHLE
3. HETHEZSGL
a. d—RU—FTa>JDLE
b. BELGHLEDERIZDE F

QPLEX 131

E/
B L\ b4 l:l-l-d) E/?;B

QPLEX (EE

® H—EXDEEENmLELT
O Module EAD S 1 EHFEB LD, FEASORESHEDEO
@ RN SOEEUVELENEOICRD., BREEMEI,EELE
O CS* PdM A GitHub @ 1 XI5z R TIEETET 5L DICR o1
O IVIZ7IREREINKLS. 2FFARTLEVWI0DIFEFE>TLES

QPLEX 134

247>k (NeXtJS) /\O)E!/EE

® Rails 7217 T# < Next.js DEMNEBFEBHIFTUVS
O MERO—BZEIH. Nextjs BB TRIERICAEFITIERRICHALL O

Permission policy="project" method="update"
Button>#REE 9 %</Button
Permission

Permission policy="project" method="delete"

Button>HlIBR 9 5</Button
Permission

247>k (NeXtJS) /\O)E!/EE

® Rails 7217 T# < Next.js DEMNEBFEBHIFTUVS

O #1ERO—BEZEITcH. Next.js HIZEITA < HE PN HanNt ol CleRoL: 2L s =k
ERI VIFRTINERW

Permission policy="project" method="update"
Button>#REE 9 % </Button

Permission

Permission policy="project" method="delete"
Button>HlER 9 %</Button

Permission

247>k (NeXtJS) /\ODE/EE

® Rails 7217 T# < Next.js DEMNEBFEBHIFTUVS

O tERD—EZEIcH. Nextjs HIZEITA < MR e qNt ol Clenny A rnra ny: =i
mERI VIERIEINGZL

" method="up

t" method="delete"

FEPRIC & B Ul O#IiE%
ESHICEERTESLSICLTWVWDS

HFIF: Rails h54rDTHEA

QOPLEX E

Next.js H*'5 Rails NI X k

T — X DS
T—XDEE

QPLEX 139

Next.js H*'5 Rails NI X k

Module IC& B HIE
record & scope E—F

QPLEX 140

Next.js H*'5 Rails NI X k

AroiLs ™ NEXT.

HEBFHDT —H

QPLEX

Next.js D5 Rails NJ I I X k

) NEXT
A rans XTos

QPLEX 142

Next.js DIEREIE

Arois ™= NEXT.:

QPLEX

Next.js DIEREIE

lIIIIIHIIHiIIH%%%IIIIII

Arois ™= NEXT.:

QPLEX

Next.js DIEREIE

Module IZ & 3 HIE
list E— F

Arois ™= NEXT.:

QPLEX

Next.js DIEREIE

Module IZ & 3 HIE

list E— F

AroiLs ™ NEXT.

ERO—EBZEY

QPLEX 146

Next.js DH¥EREIE

.:’rR\n“_s me) NE X T

ERO—EBZEY

QPLEX &7

ITLL

Next.js TODIEREI

QPLEX 148

"project": {
"read":
"create": true,
"update": ["author", "assignee"],
"delete": false,
"view_settings_page": fal

b
n I‘eport" . {

"project": {
"read":
"create": true,
"update": ["author", "assignee"],
"delete": false,
"view_settings_page": fal

}s
"report": {

QPLEX 150

"project": {
"read":
"create": true,
"update": ["author", "assignee"],
"delete": false,
"view_settings_page": fal

}s
"report": {

"project”: { BRI L O— RARERIEE E
"read": tri or ZHEDF—DEF

"create": true,
"update": ["author", "assignee"],
"delete": false,

"view_settings_page":
}
"report": {

QPLEX 152

newPolicyMap = Object.entries(permissions).reduce((map, [k])
key = k Permi S
policy = Poli ory.create(key, permissions, { user })

if (policy) map[key] = policy
return map
d [3 P l:‘ i

QPLEX 153

.entries(permissions).reduce((map, [k])

¥EPRD U 5 X =4FE

ory.create(key, permissions, { user })

if (policy) map[key] = policy

QPLEX 154

export type PolicyMap = {
project: ProjectPolicy

export class PolicyFactory {
ic create<K extends keyof PolicyMap>(
policyKey: K,
permissions: Permissions,
context: PolicyContext,
): PolicyMap[K] | undefined {
switch (policyKey) {
case 'project':
return new ProjectPolicy(permissions['project'], context) as PolicyMap[K]

default: {
return undefin

QPLEX 155

QPLEX

export type PolicyMap = {
project: ProjectPolicy

export class PolicyFactory {
> create<K extends keyof PolicyMap>(

policyKey: K,

permissions: Permissions,

context: PolicyContext,

): PolicyMap[K] | undefined {
switch (policyKey) {
case 'project':

¥ERD U 5 A =HFE

return new ProjectPolicy(permissions['project'], context) as PolicyMap[K]

default: {
return undefin

156

export type PolicyContext = {
user: User

bstract class BasePolicy<P extends Permissions[keyof Permissions]> {

tructor(protected permissions: P, protected context: PolicyContext) {}

tract read(...model: unknown[]): boolean
tract create(...model: unknown[]): boolean
ract update(...model: unknown[]): boolean
abstract delete(...model: unknown[]): boolean

QPLEX 157

export type PolicyContext = {
user: User

lass BasePolicy<P extends Permissions[keyof Permissions]> {
yrotected permissions: P, protected context: PolicyContext) {}

)stract read(...model: unknown[]): boolean
abstract create(...model: unknown[]): boolean
ract update(...model: unknown[]): boolean
ract delete(...model: unknown[]): boolean

QPLEX 158

export type PolicyContext = {
user: User

lass BasePolicy<P extends Permissions[keyof Permissions]> {
yrotected permissions: P, protected context: PolicyContext) {}

ict read(...model: unknown[]): boolean

abstract create(...model: unknown[]): boolean BEDT T 4L LT
ct update(...model: unknown[]): boolean CRUD ZE %

ract delete(...model: unknown[]): boolean

QPLEX 159

ProjectPolicy 1 ePolicy<Per ons['project']> {

e author = (project: Proj
ean(project.author && project.author.id s.context.user.id)

e assignee = (project: Pro
rn extractNodes(project.assignees).some((v) v.id .context.user.id)

i
is.permissions[

update

if (typ permission
return permission

}

if (project
return fa

n permission.some((key)
tch (toCamelCase(key)) {

author(project)

.assignee(project)

delete = (): boolean {
return .permissions[

viewSettingsPage = (): boolean
return .permissions[

QPLEX 160

export class ProjectPolicy extends BasePolicy<Permissions['project']> {

read = (): boolean {
return Ls.permissions['read']

create = (): boolean => {
return ls.permissions['create']

update = (): boolean =>

delete = (): boolean => {
return this.permissions['delete']

viewSettingsPage = (): boolean => {
return this.permissions['viewSettingsPage']

export class ProjectPolicy extends BasePolicy<Permissions['project']> {
yrivate author = (project: Project): boolean => {
return Boolean(project.author & project.author.id === this.context.user.id)
I
rivate assignee = (project: Project): boolean => {
return extractNodes(project.assignees).some((v) => v.id === this.context.user.id)
}

update = (): boolean => {

st permission = this.permissions['update']
if (typeof permission === 'boolean') {
return permission
}
if (project === undefined) {
return false
}

return permission.some((key) => {
switch (toCamelCase(key)) {

case 'author':

return this.author(project)
case 'assignee':

return this.assignee(project)
default:

return fal

b

QPLEX } 162

export class ProjectPolicy extends BasePolicy<Permissions['project']> {
e author = (project: Project): boolean {

return Boolean(project.author && project.author.id === this.context.user.id)
}
e assignee = (project: Project): boolean {
return extractNodes(project.assignees).some((v) => v.id === this.context.user.id)
}

update = (): boolean {

t permission = this.permissions['update']
if (typeof permission === 'boolean') { g{q:% ,__.%
return permission S 0=
}
if (project === undefined) {
return
}

return permission.some((key) => {
switch (toCamelCase(key)) {
case 'author':

return this.author(project)
case 'assignee':
return this.assignee(project)
default:
return fal
)
1

QPLEX } 163

export class ProjectPolicy extends BasePolicy<Permissions['project']> {
e author = (project: Project): boolean {

return Boolean(project.author && project.author.id === this.context.user.id)
}
e assignee = (project: Project): boolean {
return extractNodes(project.assignees).some((v) => v.id === this.context.user.id)
}

update = (): boolean {

t permission = this.permissions['update']
if (typeof permission === 'boolean') { [2] 8.,
return permission #IJA-F_b Boolean @i’m_:l
}
if (project === undefined) {
return
}

return permission.some((key) => {
switch (toCamelCase(key)) {
case 'author':

return this.author(project)
case 'assignee':
return this.assignee(project)
default:
return fal
)
1

QPLEX } 164

export class ProjectPolicy extends BasePolicy<Permissions['project']> {
> author = (project: Project): boolean {

return Boolean(project.author && project.author.id === this.context.user.id)
}
> assignee = (project: Project): boolean {
return extractNodes(project.assignees).some((v) => v.id === s.context.user.id)
}

update = (): boolean {

t permission = this.permissions['update']
if (typeof permission === 'boolean') {
return permission
}
if (project === undefined) {

return false E1ZBE,‘J7‘3: l/ ad— I\‘\b\\@ L\i’%é

return permission.some((key) => {
switch (toCamelCase(key)) {
case 'author':

return this.author(project)
case 'assignee':
return this.assignee(project)
default:
return
)
1

QPLEX } 165

export class ProjectPolicy extends BasePolicy<Permissions['project']> {
e author = (project: Project): boolean {

return Boolean(project.author && project.author.id === this.context.user.id)
}
e assignee = (project: Project): boolean {
return extractNodes(project.assignees).some((v) => v.id === this.context.user.id)
}

update = (): boolean {

t permission = this.permissions['update']
if (typeof permission === 'boolean') {
return permission
}
if (project === undefined) {
return 1
}

return permission.some((key) => {
switch (toCamelCase(key)) {
case 'author':

return this.author(project)
case 'assignee': or %#FU)*IJEE%/?’B
return this.assignee(project)
default:
return fal
)
b

QPLEX } 166

C C FTTOERIE

® Rails IS5 E->TE/IERD—ED JSON ZfE>T Map Zz2< 2 TWLW3
@® 7D Map Z Next.js TEIEYT 3 Z & T Next.js DIEREEZEIELTWVS
® Nextjs THHERDIZRADERCLFEZL TV

® EHAMAL J— FHABELHIEIL Nextjs TIToTWS

167

QPLEX

checkPermission = useCallback(
<P ends PolicyKeys, M extends PolicyMethodKey<P>>(
policyKey: P,
methodKey: M,
model?: ModelType<P, M>,
: boolean => {
t validMethod = (policy: PolicyMap[P], method: M) => {

return Object.prototype.hasOwnProperty.call(policy, method as string)

1

t policy = policyMap[policyKey]
if (!policy) return fa

method = validMethod(policy, methodKey) ? policy[methodKey] :

if (typeof method !== 'function') {
throw new Error('Permission method(${methodKey}) is not function in policy(${policyKey})")

if (model) {
return method(...[model])

i

return method()
h
[policyMapl,

QPLEX 168

checkPermission = useCallback(
<P & PolicyKeys, M extends PolicyMethodKey<P>>(
policyKey: P,
methodKey: M,
model?: ModelType<P, M>,
: boolean {
validMethod = (policy: PolicyMap[P], method: M) => {

return Object.prototype.hasOwnProperty.call(policy, method as string)

1

policy = policyMap[policyKey] j{l’%t){@ L\i:%é‘

if (!policy) return

method = validMethod(policy, methodKey) ? policy[methodKey] :

if (typeof method !== 'function') {
throw Error(Permission method(${methodKey}) is not function in policy(${policyKey})")

if (model) {
return method(...[model])

i

return method()
h
[policyMapl,

QPLEX 169

checkPermission = useCallback(
<P ends PolicyKeys, M extends PolicyMethodKey<P>>(
policyKey: P,
methodKey: M,
model?: ModelType<P, M>,
: boolean => {
validMethod = (policy: PolicyMap[P], method: M) => {

return Object.prototype.hasOwnProperty.call(policy, method as string)

1

t policy = policyMap[policyKey]
if (!policy) return fa

method = validMethod(policy, methodKey) ? policy[methodKey] :

if (typeof method == 'function') { BIED B WSS

throw Error(Permission method(${methodKey}) is not function in policy(${policyKey})")

if (model) {
return method(...[model])

i

return method()
h
[policyMapl,

QPLEX 170

checkPermission = useCallback(
<P & PolicyKeys, M extends PolicyMethodKey<P>>(
policyKey: P,
methodKey: M,
model?: ModelType<P, M>,
: boolean {
validMethod = (policy: PolicyMap[P], method: M) {

return Object.prototype.hasOwnProperty.call(policy, method as string)

1

policy = policyMap[policyKey]
if (!policy) return

method = validMethod(policy, methodKey) ? policy[methodKey] :

if (typeof method !== 'function') {
throw Error(Permission method(${methodKey}) is not function in policy(${policyKey})")

ﬁr'(e?\cj(:(r?lnieihod(...[model]) E{ZISE,‘J 73: I/ :I — I\“ 73{?5’% :_k ?h—C L\ 5 i’%é

i

return method()
h
[policyMapl,

QPLEX 171

checkPermission = useCallback(
<P & PolicyKeys, M extends PolicyMethodKey<P>>(
policyKey: P,
methodKey: M,
model?: ModelType<P, M>,
: boolean {
validMethod = (policy: PolicyMap[P], method: M) {

return Object.prototype.hasOwnProperty.call(policy, method as string)

1

policy = policyMap[policyKey]
if (!policy) return

method = validMethod(policy, methodKey) ? policy[methodKey] :

if (typeof method !== 'function') {
throw Error(Permission method(${methodKey}) is not function in policy(${policyKey})")

if (model) {
return method(. . .[modglds

}
return method() E1ZISE,‘J73: l/:l_ Pb{j:alﬁféh—t L\@L\i%é
1

[policyMapl,

QPLEX 172

checkPermission('project', ' , 1 model: project})

QPLEX 173

checkPermission('project', 'update', { model: project})

R EBENBEREINTWVWS &:

QPLEX 174

export const Permission = <
P extends PolicyKeys,
M extends PolicyMethodKey<P>,
>({
policy,
method,
model,
fallback,
children,
: Props<P, M, Strict>): ReactNode => {
nst result = checkPermission(policy, method, { model: })

return result ? <>{children}</> : fallback || null

QPLEX 175

Permission policy="project

" method="ur e" model={project} fallback={<PermissionDenied

FEPRIC & B Ul Ol %
EEMICEERTESRLS5ICLTVWS

QPLEX 176

project @ update DIERHL A WEEIE
mERI VIFRTEINERL

" method="update" model={project} fallback=

FEPRIC & B Ul Ol %
EEMICEERTESRLS5ICLTVWS

QPLEX 177

MR EABENBREINTULS &:

" method="update" model={project} fallback=

FEPRIC & % Ul OFliE%
BEEMICEERTESLSICLTVWS

QPLEX 178

BAm7R L J— FHABERFIE IS

" method="update" model={project} fallback=

FEPRIC & % Ul OFliE%
BEEMICEERTESLSICLTVWS

QPLEX 179

MERD 7R LB E DR

model={project} fallback=

FEPRIC & % Ul OFliE%
BEEMICEERTESLSICLTVWS

QPLEX 180

F CHEIE

Rails 58 > TE/HERD—E®D JSON ZfE->T Map #2< 2 TW3

D Map % Next.js TEIEYT S ¥ T Next.js DIEFREBEZRITL TWL3

Next.js THIERD IV S ADERCHFHEZLTWLWS

BFER7a L 11— FHABELRFAIEIF Next.js TITo>TWDB

1EPRD Map Z /&9 % C & T Next.js THOXWNRCIBENRARINICEEZ BLWZEEH
1ERRICEK 2 Ul OFIHZzESRICEEARTET S LDICLTVS

(1

—
®
®
®
®
®
®

QPLEX 181

X L8

@ IEREEZMEZRD L. FERELY—EINDEERAKEV
@ ERBEINRMEBREICLZIDIF. RENEELY—EXORRCEICEKTEZ L
BB KRTE L 1eREHD RE

HERDREIF. B2 (admin?) THLHERICKEFELELS
IEREIRIT. WREBRECLRBENEEZHD 4 DICHIT5ND
4 D% D E|% LT- Module D&t & REDREER
RORETDEELX IS0 7 >k (Nextjs) NDFEE

BRWERICHESARV - BEZ AL
1ERBIE DRt E ER
Kaigi on Rails 2025

@naro143 (Yusuke Ishimi)

QPLEX

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185

