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持ち帰っていただきたいこと
● 権限管理の重要性とアンチパターンの理解

● 権限管理の要素を適切に分割することで技術負債と間違いが減らせる

● 具体的な実装例（今後の議論のきっかけになれば幸いです）
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⽬次
● 権限管理の重要性

● よくある実装とアンチパターンと対処法

● 権限管理の要素の整理（ Pundit を例に）

● 要素を適切に分割した Module の実装の解説

● 改善後の事業とサービスへの影響
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Module のサンプルは GitHub で公開しています



権限管理
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権限管理の例
● 運営アカウントだけ特殊なボタンが表⽰される

● 管理者アカウントだけメンバーを招待できる

● 追加プランの契約ユーザーだけ機能が増える

業務⽀援 SaaS だと ...

● 管理者アカウントだけお⾦の情報（契約⾦額や給与）が⾒れる

● 外部アカウント（業務委託）は担当のプロジェクトの情報だけ⾒れる（取引先は⾒れ

ない）
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権限管理の例
● 運営アカウントだけ特殊なボタンが表⽰される

● 管理者アカウントだけメンバーを招待できる

● 追加プランの契約ユーザーだけ機能が増える

業務⽀援 SaaS だと ...

● 管理者アカウントだけお⾦の情報（契約⾦額や給与）が⾒れる

● 外部アカウント（業務委託）は担当のプロジェクトの情報だけ⾒れる

7

権限管理のミス



権限管理の例
● 運営アカウントだけ特殊なボタンが表⽰される

● 管理者アカウントだけメンバーを招待できる

● 追加プランの契約ユーザーだけ機能が増える

業務⽀援 SaaS だと ...

● 管理者アカウントだけお⾦の情報（契約⾦額や給与）が⾒れる

● 外部アカウント（業務委託）は担当のプロジェクトの情報だけ⾒れる
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給与を公開しちゃった
取引先を公開しちゃった



権限管理の例
● 運営アカウントだけ特殊なボタンが表⽰される

● 管理者アカウントだけメンバーを招待できる

● 追加プランの契約ユーザーだけ機能が増える

業務⽀援 SaaS だと ...

● 管理者アカウントだけお⾦の情報（契約⾦額や給与）が⾒れる

● 外部アカウント（業務委託）は担当のプロジェクトの情報だけ⾒れる
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サービスへの信頼が下がる
事業への損失が⼤きい



権限管理の例
● 運営アカウントだけ特殊なボタンが表⽰される

● 管理者アカウントだけメンバーを招待できる

● 追加プランの契約ユーザーだけ機能が増える

業務⽀援 SaaS だと ...

● 管理者アカウントだけお⾦の情報（契約⾦額や給与）が⾒れる

● 外部アカウント（業務委託）は担当のプロジェクトの情報だけ⾒れる
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権限管理のミスは許されない



レビューする気持ちで⾒てください
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よくある実装①
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よくある実装②
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よくある実装③
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よくある実装③
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なんだよ super_admin って ...



よくある実装③
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そもそも admin? の判定は
アンチパターン



役割は変わり⾏く
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事業やサービスの変化
事業

● ターゲットとする市場（業種）の変化

● ターゲットとする企業規模の変化

● ターゲットとするユーザーの変化

サービス

● 提供する機能の変化
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事業やサービスの変化
事業

● ターゲットとする市場（業種）の変化

● ターゲットとする企業規模の変化

● ターゲットとするユーザーの変化

サービス

● 提供する機能の変化
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建設業と運送業の
管理者は同じ業務と責務？



事業やサービスの変化
事業

● ターゲットとする市場（業種）の変化

● ターゲットとする企業規模の変化

● ターゲットとするユーザーの変化

サービス

● 提供する機能の変化
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10 名と 100 名の企業の
管理者は同じ業務と責務？



事業やサービスの変化
事業

● ターゲットとする市場（業種）の変化

● ターゲットとする企業規模の変化

● ターゲットとするユーザーの変化

サービス

● 提供する機能の変化
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同じ admin?



事業やサービスの変化
事業

● ターゲットとする市場（業種）の変化

● ターゲットとする企業規模の変化

● ターゲットとするユーザーの変化

サービス

● 提供する機能の変化
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役割に依存した判定は
アンチパターン



事業やサービスの変化
事業

● ターゲットとする市場（業種）の変化

● ターゲットとする企業規模の変化

● ターゲットとするユーザーの変化

サービス

● 提供する機能の変化
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役割の種類も
提供する機能も

増えていく



事業やサービスの変化
事業

● ターゲットとする市場（業種）の変化

● ターゲットとする企業規模の変化

● ターゲットとするユーザーの変化

サービス

● 提供する機能の変化
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だから、権限管理は複雑になる
いつか、技術負債になる



リファクタリング
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よくある実装①
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よくある実装①

27

プロジェクトを作成できるのか？



よくある実装①
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プロジェクトを作成できるのか？

わからない ...



admin? からの卒業
● 役割に依存した実装は、権限が暗黙的になる

○ レビュワーは、常に役割の権限を知らないといけない

○ 判定箇所が散らばり、どのような権限が定義されているのかわからない

● 役割に依存した実装は、変化に弱い

○ 役割の権限が変化した際に、多くの判定箇所を⾒ないといけない

○ 権限の整合性を確認するために、多くの判定箇所を⾒ないといけない
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役割でなく、権限に依存する
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役割でなく、権限に依存する

31

プロジェクトを作成できるのか？



役割でなく、権限に依存する
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役割でなく、権限に依存する
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これだけでも、だいぶ良くなる



役割でなく、権限に依存する
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ここまでが導⼊



役割でなく、権限に依存する
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より深みへ



権限管理で⼤事なこと
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間違えない
1. 実装で間違えない

a. 追加、変更をするとき

2. 利⽤で間違えない

a. 処理の中で判定をするとき

3. 理解で間違えない

a. コードリーディングのとき

b. お問い合わせの回答のとき
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間違えない
1. 実装で間違えない

a. 追加、変更をするとき

2. 利⽤で間違えない

a. 処理の中で判定をするとき

3. 理解で間違えない

a. コードリーディングのとき

b. お問い合わせの回答のとき
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権限はお問い合わせが多い



RBAC と ABAC
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RBAC と ABAC
RBAC （Role-Based Access Control）

● 運営アカウント

● 管理者アカウント

● 外部アカウント

ABAC （Attribute-Based Access Control）

● 作成者

● 担当者
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RBAC と ABAC
RBAC （Role-Based Access Control）

● 運営アカウント

● 管理者アカウント

● 外部アカウント

ABAC （Attribute-Based Access Control）

● 作成者

● 担当者
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役割

条件（役割以外）



権限管理を整理する
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具体例で整理
● 「プロジェクトの更新は、管理者か担当者ならできる」
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具体例で整理
● 「プロジェクトの更新は、管理者か担当者ならできる」

● 「対象の、操作は、役割か条件ならできる」
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具体例で整理
● 「プロジェクトの更新は、管理者か担当者ならできる」

● 「対象の、操作は、役割か条件ならできる」

● 「 Model の、 CRUD は、 Role か Scope ならできる」
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Pundit で実装
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Pundit
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Pundit

48

まだパッとわかる



Pundit
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プロジェクトの更新は、
管理者か

マネージャーかつ
担当者か作成者ならできる

外部アカウントは
どんな場合もできない



Pundit
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Pundit

51

「通常ユーザーは、プロジェクトの更新ができますか？」と
聞かれたら回答するのに何秒必要ですか？



Pundit
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「通常ユーザーは、プロジェクトの更新ができますか？」と
聞かれたら回答するのに何秒必要ですか？

全部読みましたね？
5~10秒くらいかな



Pundit
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「通常ユーザーは、プロジェクトの更新ができますか？」と
聞かれたら回答するのに何秒必要ですか？

実際のサービスでは
より判定は複雑になる



Pundit
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「通常ユーザーは、プロジェクトの更新ができますか？」と
聞かれたら回答するのに何秒必要ですか？

どうしてパッとわからないのか



具体例で整理
● 「プロジェクトの更新は、管理者か担当者ならできる」

● 「対象の、操作は、役割か条件ならできる」

● 「 Model の、 CRUD は、 Role か Scope ならできる」
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Pundit
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対象
操作

役割 条件



RBAC と ABAC
RBAC （Role-Based Access Control）

● 運営アカウント

● 管理者アカウント

● 外部アカウント

ABAC （Attribute-Based Access Control）

● 作成者

● 担当者
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役割

条件（役割以外）



Pundit
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対象
操作

役割 条件



Pundit
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対象
操作

役割 条件



Pundit
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対象
操作

役割 条件

役割と条件を分けよう



Pundit
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対象
操作

役割 条件

つくりました



Module の設計と実装
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64

対象

操作 役割

条件
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Project / Manager

def update

assignee? || author?



66

なんとなくわかった⼈🙋



67

英語と論理演算がわかれば🙆



68

どうやって実現しているか
⾒ていきます



ざっくり概要
1. 対象と役割から権限のクラスを特定

2. 判定モードの指定

3. 操作名の関数を実⾏

4. 条件の判定
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71

対象

Model と 1 対 1
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役割

User の role と 1 対 1



73

操作
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条件
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対象

役割

操作

条件



ここまでの整理
● 対象ごとにディレクトリを作成、役割ごとにファイルを作成

○ 役割と条件を分ける
● 権限のクラスの特定でメタプログラミングを活⽤

○ 権限の変更が容易
● 対象の基底クラスで CRUD 以外の操作を追加

○ 対象ごとに異なる操作の拡張に対応
● 対象の基底クラスで条件を定義、条件を論理演算で使⽤

○ 判定は英語と論理演算がわかれば⼗分
○ 対象によって異なる条件の判定に対応
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77

エントリーポイント
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使い⽅
1. レコードに対して権限があるかを判定する（ recordモード）
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対象と操作が明⽰されている👍



使い⽅
2. 権限があるレコードのみに絞り込む（ scopeモード）
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対象と操作が明⽰されている👍



使い⽅
3. 権限の⼀覧を取得する（ listモード）
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主にクライアントに渡して利⽤する



82

Context.new して関数を実⾏



83

権限のクラスを特定して判定を⾏う
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86

対象と役割から
権限のクラスを特定する



87

対象と役割から
権限のクラスを特定する
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使い⽅
1. レコードに対して権限があるかを判定する（ recordモード）
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対象と操作が明⽰されている👍



90

権限のクラスを
recordモードで new



91

権限のクラスを
recordモードで new

操作名の関数を実⾏
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使い⽅
2. 権限があるレコードのみに絞り込む（ scopeモード）

93

対象と操作が明⽰されている👍



94

権限のクラスを
scopeモードで new



95

権限のクラスを
scopeモードで new

操作名の関数を実⾏
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使い⽅
3. 権限の⼀覧を取得する（ listモード）
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主にクライアントに渡して利⽤する



98

Policy::{ 対象 } で定義されている
対象名を全て取得



99

Policy::{ 対象 } で定義されている
対象名を全て取得

権限のクラスを
listモードで new
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Policy::{ 対象 } で定義されている
対象名を全て取得

権限のクラスを
listモードで new

権限のクラスで定義されている
全ての public メソッドを実⾏



ここまでの整理
● 対象ごとにディレクトリを作成、役割ごとにファイルを作成

○ 役割と条件を分ける
● メタプログラミングを活⽤

○ 権限の変更が容易
● 対象の基底クラスで CRUD 以外の操作を追加

○ 対象ごとに異なる操作の拡張に対応
● 対象の基底クラスで条件を定義、条件を論理演算で使⽤

○ 判定は英語と論理演算がわかれば⼗分
○ 対象によって異なる条件の判定に対応
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102

権限の基底クラス
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104

判定に必要な情報
判定のモード



105

操作のデフォルトとして CRUD を定義
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対象の基底クラス
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108

recordモード⽤の条件を定義
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scopeモード⽤の条件を定義



110

CRUD 以外の操作の追加



ここまでの整理
● 対象ごとにディレクトリを作成、役割ごとにファイルを作成

○ 役割と条件を分ける
● 権限のクラスの特定でメタプログラミングを活⽤

○ 権限の変更が容易
● 対象の基底クラスで CRUD 以外の操作を追加

○ 対象ごとに異なる操作の拡張に対応
● 対象の基底クラスで条件を定義、条件を論理演算で使⽤

○ 判定は英語と論理演算がわかれば⼗分
○ 対象によって異なる条件の判定に対応
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112

権限の具体クラス
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114

対象の基底クラスで定義した条件
を使⽤して判定を表現する

条件がない場合は
Boolean を記述する



115

対象の基底クラスで定義した条件
を使⽤して判定を表現する

条件がない場合は
scope か scope.none を記述する
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具体的なレコードが必要な場合は
or 条件のキーを配列で返す

条件がない場合は
Boolean を記述する



117

追加した操作の条件も
同様に記述



ここまでの整理
● 対象ごとにディレクトリを作成、役割ごとにファイルを作成

○ 役割と条件を分ける
● 権限のクラスの特定でメタプログラミングを活⽤

○ 権限の変更が容易
● 対象の基底クラスで CRUD 以外の操作を追加

○ 対象ごとに異なる操作の拡張に対応
● 対象の基底クラスで条件を定義、条件を論理演算で使⽤

○ 判定は英語と論理演算がわかれば⼗分
○ 対象によって異なる条件の判定に対応
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ざっくり概要
1. 対象と役割から権限のクラスを特定

2. 判定モードの指定

3. 操作名の関数を実⾏

4. 条件の判定
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Q. 問題 
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121



122

対象

役割
操作

条件



123

なんとなくわかった⼈🙋



124

明⽇から弊社で
お問い合わせ対応できます



使⽤例
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126

read できる projects に絞り込む
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read できる projects に絞り込む

update できる project か判定
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read できる projects に絞り込む

update できる project か判定

権限に依存しているので明⽰的
役割の変化に影響されない
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パッとわかる

パッとわかる



130

パッとわかる



間違えない
1. 実装で間違えない

a. 追加、変更をするとき

2. 利⽤で間違えない

a. 処理の中で判定をするとき

3. 理解で間違えない

a. コードリーディングのとき

b. お問い合わせの回答のとき
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間違えない
1. 実装で間違えない

a. 追加、変更をするとき

2. 利⽤で間違えない

a. 処理の中で判定をするとき

3. 理解で間違えない

a. コードリーディングのとき

b. お問い合わせの回答のとき
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間違えない👏



良い設計の影響
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事業への影響
● サービスの信頼性が向上した

○ Module 導⼊から 1年が経過したが、不具合の発⽣件数がゼロ

● 社内からのお問い合わせがゼロになり、開発⽣産性が向上した

○ CS や PdM が GitHub の 1 次情報を⾒て理解できるようになった

○ エンジニアは質問されたら、全部調べてしまい 10 分ほど使ってしまう
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クライアント（ Next.js ）への影響
● Rails だけでなく Next.js の技術負債も防げている

○ 権限の⼀覧を渡すため、 Next.js も役割でなく権限に依存する実装に⾃然となった
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クライアント（ Next.js ）への影響
● Rails だけでなく Next.js の技術負債も防げている

○ 権限の⼀覧を渡すため、 Next.js も役割でなく権限に依存する実装に⾃然となった
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project の update の権限がない場合は
編集ボタンは表⽰されない



クライアント（ Next.js ）への影響
● Rails だけでなく Next.js の技術負債も防げている

○ 権限の⼀覧を渡すため、 Next.js も役割でなく権限に依存する実装に⾃然となった
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project の update の権限がない場合は
編集ボタンは表⽰されない

権限による UI の制御を
宣⾔的に記述できるようにしている



おまけ： Rails から外の世界へ
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Next.js から Rails へリクエスト
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データの取得
データの変更



Next.js から Rails へリクエスト
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Module による判定
record と scopeモード



Next.js から Rails へリクエスト
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判定済みのデータ



Next.js から Rails へリクエスト
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判定済みのデータ Web Dev Tool でも⾒れない



Next.js の権限管理
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Next.js の権限管理

144

ユーザーの指定



Next.js の権限管理
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Module による判定
listモード



Next.js の権限管理

146

権限の⼀覧を渡す

Module による判定
listモード



Next.js の権限管理
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権限の⼀覧を渡す

Module による判定
listモード 権限による UI制御



Next.js での権限管理
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149



150

対象



151

操作



152

操作

具体的なレコードが必要な場合は
or 条件のキーの配列
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154

権限のクラスを特定
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156

権限のクラスを特定



157



158

ユーザーの管理
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操作のデフォルトとして
CRUD を定義
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161
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163

条件を定義
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判定が Boolean の場合
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具体的なレコードがない場合
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or 条件の判定を⾏う



ここまでの整理
● Rails から渡ってきた権限の⼀覧の JSON を使って Map をつくっている

● その Map を Next.js で管理することで Next.js の権限管理を実現している

● Next.js でも権限のクラスの定義と特定をしている

● 具体的なレコードが必要な判定は Next.js で⾏っている
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169

対象がない場合
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操作がない場合
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具体的なレコードが指定されている場合
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具体的なレコードが指定されていない場合
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174

対象と操作が明⽰されている👍



175



176

権限による UI の制御を
宣⾔的に記述できるようにしている
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project の update の権限がない場合は
編集ボタンは表⽰されない

権限による UI の制御を
宣⾔的に記述できるようにしている
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権限による UI の制御を
宣⾔的に記述できるようにしている

対象と操作が明⽰されている👍
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権限による UI の制御を
宣⾔的に記述できるようにしている

具体的なレコードが必要な判定に対応
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権限による UI の制御を
宣⾔的に記述できるようにしている

権限がない場合の表⽰



ここまでの整理
● Rails から渡ってきた権限の⼀覧の JSON を使って Map をつくっている

● その Map を Next.js で管理することで Next.js の権限管理を実現している

● Next.js でも権限のクラスの定義と特定をしている

● 具体的なレコードが必要な判定は Next.js で⾏っている

● 権限の Map を活⽤することで Next.js でも対象と操作が明⽰された間違えないを実現

● 権限による UI の制御を宣⾔的に記述できるようにしている
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まとめ
● 権限管理を間違えると、事業とサービスへの損失が⼤きい

● 権限管理が技術負債になるのは、役割が事業とサービスの成⻑と共に変化することと 

役割に依存した実装が原因

● 権限の実装は、役割（ admin? ）でなく権限に依存しよう

● 権限管理は、対象と操作と役割と条件の 4 つに分けられる

● 4 つを分割をした Module の設計と実装の解説

● 良い設計の事業とクライアント（ Next.js ）への影響
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Module のサンプルは GitHub で公開しています



「技術負債にならない‧間違えない」
権限管理の設計と実装

Kaigi on Rails 2025
@naro143 （ Yusuke Ishimi ）
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