
「技術負債にならない‧間違えない」
権限管理の設計と実装

Kaigi on Rails 2025
@naro143 （ Yusuke Ishimi ）

Yusuke Ishimi

2

株式会社プレックス
テックリード

@naro143 @naro143

持ち帰っていただきたいこと
● 権限管理の重要性とアンチパターンの理解

● 権限管理の要素を適切に分割することで技術負債と間違いが減らせる

● 具体的な実装例（今後の議論のきっかけになれば幸いです）

3

⽬次
● 権限管理の重要性

● よくある実装とアンチパターンと対処法

● 権限管理の要素の整理（ Pundit を例に）

● 要素を適切に分割した Module の実装の解説

● 改善後の事業とサービスへの影響

4

Module のサンプルは GitHub で公開しています

権限管理

5

権限管理の例
● 運営アカウントだけ特殊なボタンが表⽰される

● 管理者アカウントだけメンバーを招待できる

● 追加プランの契約ユーザーだけ機能が増える

業務⽀援 SaaS だと ...

● 管理者アカウントだけお⾦の情報（契約⾦額や給与）が⾒れる

● 外部アカウント（業務委託）は担当のプロジェクトの情報だけ⾒れる（取引先は⾒れ

ない）

6

権限管理の例
● 運営アカウントだけ特殊なボタンが表⽰される

● 管理者アカウントだけメンバーを招待できる

● 追加プランの契約ユーザーだけ機能が増える

業務⽀援 SaaS だと ...

● 管理者アカウントだけお⾦の情報（契約⾦額や給与）が⾒れる

● 外部アカウント（業務委託）は担当のプロジェクトの情報だけ⾒れる

7

権限管理のミス

権限管理の例
● 運営アカウントだけ特殊なボタンが表⽰される

● 管理者アカウントだけメンバーを招待できる

● 追加プランの契約ユーザーだけ機能が増える

業務⽀援 SaaS だと ...

● 管理者アカウントだけお⾦の情報（契約⾦額や給与）が⾒れる

● 外部アカウント（業務委託）は担当のプロジェクトの情報だけ⾒れる

8

給与を公開しちゃった
取引先を公開しちゃった

権限管理の例
● 運営アカウントだけ特殊なボタンが表⽰される

● 管理者アカウントだけメンバーを招待できる

● 追加プランの契約ユーザーだけ機能が増える

業務⽀援 SaaS だと ...

● 管理者アカウントだけお⾦の情報（契約⾦額や給与）が⾒れる

● 外部アカウント（業務委託）は担当のプロジェクトの情報だけ⾒れる

9

サービスへの信頼が下がる
事業への損失が⼤きい

権限管理の例
● 運営アカウントだけ特殊なボタンが表⽰される

● 管理者アカウントだけメンバーを招待できる

● 追加プランの契約ユーザーだけ機能が増える

業務⽀援 SaaS だと ...

● 管理者アカウントだけお⾦の情報（契約⾦額や給与）が⾒れる

● 外部アカウント（業務委託）は担当のプロジェクトの情報だけ⾒れる

10

権限管理のミスは許されない

レビューする気持ちで⾒てください

11

よくある実装①

12

よくある実装②

13

よくある実装③

14

よくある実装③

15

なんだよ super_admin って ...

よくある実装③

16

そもそも admin? の判定は
アンチパターン

役割は変わり⾏く

17

事業やサービスの変化
事業

● ターゲットとする市場（業種）の変化

● ターゲットとする企業規模の変化

● ターゲットとするユーザーの変化

サービス

● 提供する機能の変化

18

事業やサービスの変化
事業

● ターゲットとする市場（業種）の変化

● ターゲットとする企業規模の変化

● ターゲットとするユーザーの変化

サービス

● 提供する機能の変化

19

建設業と運送業の
管理者は同じ業務と責務？

事業やサービスの変化
事業

● ターゲットとする市場（業種）の変化

● ターゲットとする企業規模の変化

● ターゲットとするユーザーの変化

サービス

● 提供する機能の変化

20

10 名と 100 名の企業の
管理者は同じ業務と責務？

事業やサービスの変化
事業

● ターゲットとする市場（業種）の変化

● ターゲットとする企業規模の変化

● ターゲットとするユーザーの変化

サービス

● 提供する機能の変化

21

同じ admin?

事業やサービスの変化
事業

● ターゲットとする市場（業種）の変化

● ターゲットとする企業規模の変化

● ターゲットとするユーザーの変化

サービス

● 提供する機能の変化

22

役割に依存した判定は
アンチパターン

事業やサービスの変化
事業

● ターゲットとする市場（業種）の変化

● ターゲットとする企業規模の変化

● ターゲットとするユーザーの変化

サービス

● 提供する機能の変化

23

役割の種類も
提供する機能も

増えていく

事業やサービスの変化
事業

● ターゲットとする市場（業種）の変化

● ターゲットとする企業規模の変化

● ターゲットとするユーザーの変化

サービス

● 提供する機能の変化

24

だから、権限管理は複雑になる
いつか、技術負債になる

リファクタリング

25

よくある実装①

26

よくある実装①

27

プロジェクトを作成できるのか？

よくある実装①

28

プロジェクトを作成できるのか？

わからない ...

admin? からの卒業
● 役割に依存した実装は、権限が暗黙的になる

○ レビュワーは、常に役割の権限を知らないといけない

○ 判定箇所が散らばり、どのような権限が定義されているのかわからない

● 役割に依存した実装は、変化に弱い

○ 役割の権限が変化した際に、多くの判定箇所を⾒ないといけない

○ 権限の整合性を確認するために、多くの判定箇所を⾒ないといけない

29

役割でなく、権限に依存する

30

役割でなく、権限に依存する

31

プロジェクトを作成できるのか？

役割でなく、権限に依存する

32

役割でなく、権限に依存する

33

これだけでも、だいぶ良くなる

役割でなく、権限に依存する

34

ここまでが導⼊

役割でなく、権限に依存する

35

より深みへ

権限管理で⼤事なこと

36

間違えない
1. 実装で間違えない

a. 追加、変更をするとき

2. 利⽤で間違えない

a. 処理の中で判定をするとき

3. 理解で間違えない

a. コードリーディングのとき

b. お問い合わせの回答のとき

37

間違えない
1. 実装で間違えない

a. 追加、変更をするとき

2. 利⽤で間違えない

a. 処理の中で判定をするとき

3. 理解で間違えない

a. コードリーディングのとき

b. お問い合わせの回答のとき

38

権限はお問い合わせが多い

RBAC と ABAC

39

RBAC と ABAC
RBAC （Role-Based Access Control）

● 運営アカウント

● 管理者アカウント

● 外部アカウント

ABAC （Attribute-Based Access Control）

● 作成者

● 担当者

40

RBAC と ABAC
RBAC （Role-Based Access Control）

● 運営アカウント

● 管理者アカウント

● 外部アカウント

ABAC （Attribute-Based Access Control）

● 作成者

● 担当者

41

役割

条件（役割以外）

権限管理を整理する

42

具体例で整理
● 「プロジェクトの更新は、管理者か担当者ならできる」

43

具体例で整理
● 「プロジェクトの更新は、管理者か担当者ならできる」

● 「対象の、操作は、役割か条件ならできる」

44

具体例で整理
● 「プロジェクトの更新は、管理者か担当者ならできる」

● 「対象の、操作は、役割か条件ならできる」

● 「 Model の、 CRUD は、 Role か Scope ならできる」

45

Pundit で実装

46

Pundit

47

Pundit

48

まだパッとわかる

Pundit

49

プロジェクトの更新は、
管理者か

マネージャーかつ
担当者か作成者ならできる

外部アカウントは
どんな場合もできない

Pundit

50

Pundit

51

「通常ユーザーは、プロジェクトの更新ができますか？」と
聞かれたら回答するのに何秒必要ですか？

Pundit

52

「通常ユーザーは、プロジェクトの更新ができますか？」と
聞かれたら回答するのに何秒必要ですか？

全部読みましたね？
5~10秒くらいかな

Pundit

53

「通常ユーザーは、プロジェクトの更新ができますか？」と
聞かれたら回答するのに何秒必要ですか？

実際のサービスでは
より判定は複雑になる

Pundit

54

「通常ユーザーは、プロジェクトの更新ができますか？」と
聞かれたら回答するのに何秒必要ですか？

どうしてパッとわからないのか

具体例で整理
● 「プロジェクトの更新は、管理者か担当者ならできる」

● 「対象の、操作は、役割か条件ならできる」

● 「 Model の、 CRUD は、 Role か Scope ならできる」

55

Pundit

56

対象
操作

役割 条件

RBAC と ABAC
RBAC （Role-Based Access Control）

● 運営アカウント

● 管理者アカウント

● 外部アカウント

ABAC （Attribute-Based Access Control）

● 作成者

● 担当者

57

役割

条件（役割以外）

Pundit

58

対象
操作

役割 条件

Pundit

59

対象
操作

役割 条件

Pundit

60

対象
操作

役割 条件

役割と条件を分けよう

Pundit

61

対象
操作

役割 条件

つくりました

Module の設計と実装

62

63

64

対象

操作 役割

条件

65

Project / Manager

def update

assignee? || author?

66

なんとなくわかった⼈🙋

67

英語と論理演算がわかれば🙆

68

どうやって実現しているか
⾒ていきます

ざっくり概要
1. 対象と役割から権限のクラスを特定

2. 判定モードの指定

3. 操作名の関数を実⾏

4. 条件の判定

69

70

71

対象

Model と 1 対 1

72

役割

User の role と 1 対 1

73

操作

74

条件

75

対象

役割

操作

条件

ここまでの整理
● 対象ごとにディレクトリを作成、役割ごとにファイルを作成

○ 役割と条件を分ける
● 権限のクラスの特定でメタプログラミングを活⽤

○ 権限の変更が容易
● 対象の基底クラスで CRUD 以外の操作を追加

○ 対象ごとに異なる操作の拡張に対応
● 対象の基底クラスで条件を定義、条件を論理演算で使⽤

○ 判定は英語と論理演算がわかれば⼗分
○ 対象によって異なる条件の判定に対応

76

77

エントリーポイント

78

使い⽅
1. レコードに対して権限があるかを判定する（ recordモード）

79

対象と操作が明⽰されている👍

使い⽅
2. 権限があるレコードのみに絞り込む（ scopeモード）

80

対象と操作が明⽰されている👍

使い⽅
3. 権限の⼀覧を取得する（ listモード）

81

主にクライアントに渡して利⽤する

82

Context.new して関数を実⾏

83

権限のクラスを特定して判定を⾏う

84

85

86

対象と役割から
権限のクラスを特定する

87

対象と役割から
権限のクラスを特定する

88

使い⽅
1. レコードに対して権限があるかを判定する（ recordモード）

89

対象と操作が明⽰されている👍

90

権限のクラスを
recordモードで new

91

権限のクラスを
recordモードで new

操作名の関数を実⾏

92

使い⽅
2. 権限があるレコードのみに絞り込む（ scopeモード）

93

対象と操作が明⽰されている👍

94

権限のクラスを
scopeモードで new

95

権限のクラスを
scopeモードで new

操作名の関数を実⾏

96

使い⽅
3. 権限の⼀覧を取得する（ listモード）

97

主にクライアントに渡して利⽤する

98

Policy::{ 対象 } で定義されている
対象名を全て取得

99

Policy::{ 対象 } で定義されている
対象名を全て取得

権限のクラスを
listモードで new

100

Policy::{ 対象 } で定義されている
対象名を全て取得

権限のクラスを
listモードで new

権限のクラスで定義されている
全ての public メソッドを実⾏

ここまでの整理
● 対象ごとにディレクトリを作成、役割ごとにファイルを作成

○ 役割と条件を分ける
● メタプログラミングを活⽤

○ 権限の変更が容易
● 対象の基底クラスで CRUD 以外の操作を追加

○ 対象ごとに異なる操作の拡張に対応
● 対象の基底クラスで条件を定義、条件を論理演算で使⽤

○ 判定は英語と論理演算がわかれば⼗分
○ 対象によって異なる条件の判定に対応

101

102

権限の基底クラス

103

104

判定に必要な情報
判定のモード

105

操作のデフォルトとして CRUD を定義

106

対象の基底クラス

107

108

recordモード⽤の条件を定義

109

scopeモード⽤の条件を定義

110

CRUD 以外の操作の追加

ここまでの整理
● 対象ごとにディレクトリを作成、役割ごとにファイルを作成

○ 役割と条件を分ける
● 権限のクラスの特定でメタプログラミングを活⽤

○ 権限の変更が容易
● 対象の基底クラスで CRUD 以外の操作を追加

○ 対象ごとに異なる操作の拡張に対応
● 対象の基底クラスで条件を定義、条件を論理演算で使⽤

○ 判定は英語と論理演算がわかれば⼗分
○ 対象によって異なる条件の判定に対応

111

112

権限の具体クラス

113

114

対象の基底クラスで定義した条件
を使⽤して判定を表現する

条件がない場合は
Boolean を記述する

115

対象の基底クラスで定義した条件
を使⽤して判定を表現する

条件がない場合は
scope か scope.none を記述する

116

具体的なレコードが必要な場合は
or 条件のキーを配列で返す

条件がない場合は
Boolean を記述する

117

追加した操作の条件も
同様に記述

ここまでの整理
● 対象ごとにディレクトリを作成、役割ごとにファイルを作成

○ 役割と条件を分ける
● 権限のクラスの特定でメタプログラミングを活⽤

○ 権限の変更が容易
● 対象の基底クラスで CRUD 以外の操作を追加

○ 対象ごとに異なる操作の拡張に対応
● 対象の基底クラスで条件を定義、条件を論理演算で使⽤

○ 判定は英語と論理演算がわかれば⼗分
○ 対象によって異なる条件の判定に対応

118

ざっくり概要
1. 対象と役割から権限のクラスを特定

2. 判定モードの指定

3. 操作名の関数を実⾏

4. 条件の判定

119

Q. 問題

120

121

122

対象

役割
操作

条件

123

なんとなくわかった⼈🙋

124

明⽇から弊社で
お問い合わせ対応できます

使⽤例

125

126

read できる projects に絞り込む

127

read できる projects に絞り込む

update できる project か判定

128

read できる projects に絞り込む

update できる project か判定

権限に依存しているので明⽰的
役割の変化に影響されない

129

パッとわかる

パッとわかる

130

パッとわかる

間違えない
1. 実装で間違えない

a. 追加、変更をするとき

2. 利⽤で間違えない

a. 処理の中で判定をするとき

3. 理解で間違えない

a. コードリーディングのとき

b. お問い合わせの回答のとき

131

間違えない
1. 実装で間違えない

a. 追加、変更をするとき

2. 利⽤で間違えない

a. 処理の中で判定をするとき

3. 理解で間違えない

a. コードリーディングのとき

b. お問い合わせの回答のとき

132

間違えない👏

良い設計の影響

133

事業への影響
● サービスの信頼性が向上した

○ Module 導⼊から 1年が経過したが、不具合の発⽣件数がゼロ

● 社内からのお問い合わせがゼロになり、開発⽣産性が向上した

○ CS や PdM が GitHub の 1 次情報を⾒て理解できるようになった

○ エンジニアは質問されたら、全部調べてしまい 10 分ほど使ってしまう

134

クライアント（ Next.js ）への影響
● Rails だけでなく Next.js の技術負債も防げている

○ 権限の⼀覧を渡すため、 Next.js も役割でなく権限に依存する実装に⾃然となった

135

クライアント（ Next.js ）への影響
● Rails だけでなく Next.js の技術負債も防げている

○ 権限の⼀覧を渡すため、 Next.js も役割でなく権限に依存する実装に⾃然となった

136

project の update の権限がない場合は
編集ボタンは表⽰されない

クライアント（ Next.js ）への影響
● Rails だけでなく Next.js の技術負債も防げている

○ 権限の⼀覧を渡すため、 Next.js も役割でなく権限に依存する実装に⾃然となった

137

project の update の権限がない場合は
編集ボタンは表⽰されない

権限による UI の制御を
宣⾔的に記述できるようにしている

おまけ： Rails から外の世界へ

138

Next.js から Rails へリクエスト

139

データの取得
データの変更

Next.js から Rails へリクエスト

140

Module による判定
record と scopeモード

Next.js から Rails へリクエスト

141

判定済みのデータ

Next.js から Rails へリクエスト

142

判定済みのデータ Web Dev Tool でも⾒れない

Next.js の権限管理

143

Next.js の権限管理

144

ユーザーの指定

Next.js の権限管理

145

Module による判定
listモード

Next.js の権限管理

146

権限の⼀覧を渡す

Module による判定
listモード

Next.js の権限管理

147

権限の⼀覧を渡す

Module による判定
listモード 権限による UI制御

Next.js での権限管理

148

149

150

対象

151

操作

152

操作

具体的なレコードが必要な場合は
or 条件のキーの配列

153

154

権限のクラスを特定

155

156

権限のクラスを特定

157

158

ユーザーの管理

159

操作のデフォルトとして
CRUD を定義

160

161

162

163

条件を定義

164

判定が Boolean の場合

165

具体的なレコードがない場合

166

or 条件の判定を⾏う

ここまでの整理
● Rails から渡ってきた権限の⼀覧の JSON を使って Map をつくっている

● その Map を Next.js で管理することで Next.js の権限管理を実現している

● Next.js でも権限のクラスの定義と特定をしている

● 具体的なレコードが必要な判定は Next.js で⾏っている

167

168

169

対象がない場合

170

操作がない場合

171

具体的なレコードが指定されている場合

172

具体的なレコードが指定されていない場合

173

174

対象と操作が明⽰されている👍

175

176

権限による UI の制御を
宣⾔的に記述できるようにしている

177

project の update の権限がない場合は
編集ボタンは表⽰されない

権限による UI の制御を
宣⾔的に記述できるようにしている

178

権限による UI の制御を
宣⾔的に記述できるようにしている

対象と操作が明⽰されている👍

179

権限による UI の制御を
宣⾔的に記述できるようにしている

具体的なレコードが必要な判定に対応

180

権限による UI の制御を
宣⾔的に記述できるようにしている

権限がない場合の表⽰

ここまでの整理
● Rails から渡ってきた権限の⼀覧の JSON を使って Map をつくっている

● その Map を Next.js で管理することで Next.js の権限管理を実現している

● Next.js でも権限のクラスの定義と特定をしている

● 具体的なレコードが必要な判定は Next.js で⾏っている

● 権限の Map を活⽤することで Next.js でも対象と操作が明⽰された間違えないを実現

● 権限による UI の制御を宣⾔的に記述できるようにしている

181

まとめ
● 権限管理を間違えると、事業とサービスへの損失が⼤きい

● 権限管理が技術負債になるのは、役割が事業とサービスの成⻑と共に変化することと

役割に依存した実装が原因

● 権限の実装は、役割（ admin? ）でなく権限に依存しよう

● 権限管理は、対象と操作と役割と条件の 4 つに分けられる

● 4 つを分割をした Module の設計と実装の解説

● 良い設計の事業とクライアント（ Next.js ）への影響

182

Module のサンプルは GitHub で公開しています

「技術負債にならない‧間違えない」
権限管理の設計と実装

Kaigi on Rails 2025
@naro143 （ Yusuke Ishimi ）

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185

