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L < HBERED

class ProjectsController < ApplicationController
def create
unless current_user.admin?

redirect_to root_path, alert: "#ERHINHBETI"
return
end
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class ProjectsController < ApplicationController
def create
unless current_user.manager?

redirect_to root_path, alert: "#ERHINHBETI"
return
end
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class ProjectsController < ApplicationController
def create
unless current_user.super_admin?

redirect_to root_path, alert: "#ERHINHBETI"
return
end
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L < HBERED

class ProjectsController < ApplicationController
def create
unless current_user.admin?

redirect_to root_path, alert: "#ERHINHBETI"
return
end
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class ProjectsController < Ap
def create
unless current_user.admin?

7O b Z{ERTETBDH?

redirect_to root_path, alert: "#ERHINHBETI"
return
end
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class ProjectsController < ApplicationController
def create
unless current_user.can_create_project?

redirect_to root_path, alert: "#ERHINHBETI"
return
end
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class ProjectsController < Ap AP hEFRTESDN

def create
unless current_user.can_create_project?

redirect_to root_path, alert: "#ERHINUNETT"
return
end
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class User < ApplicationRecord

enum :role, [:admin, :manager

def can_create_project?
admin? || manager?
end
end
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RBAC & ABAC
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RBAC & ABAC

RBAC Role-Based Access Control)
® EETHUVE
® EEEVHVVE
® INBTAHATTE
ABAC Attribute-Based Access Control

® fEpE
® BHE

QPLEX 20




RBAC & ABAC

RBAC Role-Based Access Control)
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ABAC Attribute-Based Access Control

® fEpE
® BHE
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By TEIE

@ 7OV hDEMF. EEENMESELSTETB]

® HRD. EFIE. KEDFHFESTETS]

® [ Model @, CRUD {&. Role h* Scope 5 TE3]
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Pundit

class ProjectPolicy < ApplicationPolicy
def update?
user.admin? !! user.assignee_projects.exists?(project: record)
end
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Pundit

ss ProjectPolicy < ApplicationPolicy
update?
return false if user.external?

user.admin? || (user.manager? & (user.assignee_projects.exists?(proje record) || user.author_projects.exists?( record)))

end
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Pundit

lef update?

f user.external?

user.admin? || (user.manager? && (user.assignee_projects.exists?( record) || user.author_projects.exists?( record)))
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By TEIE

@ 7OV hDEMF. EEENMESELSTETB]

® HRD. EFIE. KEDFHFESTETS]

® [ Model @, CRUD {&. Role h* Scope 5 TE3]
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Pundit

if user.external?

user.admin? || (user.manager? && (user.assignee_projects.exists?( record) || user.author_projects.exists?( record)))
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RBAC & ABAC

RBAC Role-Based Access Control)

® EETHUVE
® BIEEVHAUUE
® T AIVE

FHF (IKFILSH

ABAC Attribute-Based Access Control

® fEpE
® BHE
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Pundit

if user.external?

user.admin? || (user.manager? && (user.assignee_projects.exists?( record) || user.author_projects.exists?( record)))
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Pundit

if user.external?

user.admin? || (user.manager? && (user.assignee_projects.exists?( record) || user.author_projects.exists?( record)))
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module Policy
module Project
module Roles
ass Manager < Base

update
case mode
when

[:

when

assignee? || author?

when
author_or_assignee_scope
end
end
end
end
end

end




' 52
assignee? !! author? =
author_or_assignee_scope




Project / Manager
def update

assignee? | | author?
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LICENSE
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project
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README .md
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module Policy

def self.authorize(user, record, action)
context = Context.new(user:)
context.authorize(record, action)

end

def self.authorize_scope(user, scope, action)
context = Context.new(user:)
context.authorize_scope(scope, action)

end

def self.permissions(user)
context = Context.new(
context.permissions

end

end
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1. LO—KRICH L THERPHZ3HD%ZHIET S (record E—FK)

project = Project.find(1)

readable_project = Policy.authorize(current_user, project,
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2. ERD'H B L I— RDAHITKD AL (scope E—R)

projects = Project.all

readable_projects = Policy.authorize_scope(current_user, projects, :
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permissions = Policy.permissions(current_user)
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module Policy

def self.authorize(user, record, acf

context = Context.new(user: ) Context.new L TREE %= 1T

context.authorize(record, action)

end

def self.authorize_scope(user, scope, action)
context = Context.new(user:)
context.authorize_scope(scope, action)

end

def self.permissions(user)
context = Context.new(
context.permissions

end
'

ena
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module Policy
class Context

def authorize(record, action)
e(ArgumentError, 'record cannot be nil') unless record

policy = policy_class(user, record.class).new(user:, record:,

se(NotAuthorizedError, policy:, action:) unless policy.public_send(action.to_sym)

policy.record
end

def authorize_scope(scope, action)
(ArgumentError, 'scope cannot be nil') unless scope
(ArgumentError, 'scope must be ActiveRecord::Relation') unless scope.is_a?(ActiveRecord::Relation)

policy = policy_class(user, scope.klass).new(user:, scope:, mode: :scope)

policy.public_send(action.to_sym)
ena

def permissions
list = {}

policy_constants.each do |constant]
klass = policy_class(user, constant)

policy = klass.new(user:, mc 5 )

constant_result = klass.public_instance_methods(false).each_with_object({}) do }method, result
result[method.to_sym] = policy.public_send(method)

end

list[constant.to_s.underscore.to_sym] = constant_result
end

list
end

def policy_class(user, record_class)
role = user.role.camelize

"Policy::#{record_class}::Roles::#{role}".safe_constantize ||} ise(NotDefinedError, co ass:, role:)
end
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module Policy
class Context

def authorize(record, action)
e(ArgumentError, 'record cannot be nil') unless record

policy = policy_class(user, record.class).new(user:, record:,

se(NotAuthorizedError, policy:, action:) unless policy.public_send(action.to_sym)

policy.record
end

def authorize_scope(scope, action)
(ArgumentError, 'scope cannot be nil') unless scope
(ArgumentError, 'scope must be ActiveRecord::Relation') unless scope.is_a?(ActiveRecord::Relation)

policy = policy_class(user, scope.klass).new(user:, scope:, mode: :scope)

policy.public_send(action.to_sym)
ena

def permissions
list = {}

policy_constants.each do |constant]
klass = policy_class(user, constant)

policy = klass.new(user:, mc 5 )

constant_result = klass.public_instance_methods(false).each_with_object({}) do }method, result
result[method.to_sym] = policy.public_send(method)

end

list[constant.to_s.underscore.to_sym] = constant_result
end

list
end

def policy_class(user, record_class)
role = user.role.camelize

"Policy::#{record_class}::Roles::#{role}".safe_constantize ||} ise(NotDefinedError, co ass:, role:)
end
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policy_class(user, record_class) VEFRD Y S AZYET B

role = user.role.camelize

record_class}:: ::#{role}".safe_constantize }| (NotDefinedError, r
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WREKZED S
def policy_class(user, record_class) EEDY S XERET S

role = user.role.camelize

"Policy::#{record_class}::Roles::#{role}".safe_constantize || raise(NotDefinedError, recc
end

module Policy
module Project
module Roles

class Manager < Base

def update



module Policy
class Context

def authorize(record, action)
e(ArgumentError, 'record cannot be nil') unless record

policy = policy_class(user, record.class).new(user:, record:,

se(NotAuthorizedError, policy:, action:) unless policy.public_send(action.to_sym)

policy.record
end

def authorize_scope(scope, action)
(ArgumentError, 'scope cannot be nil') unless scope
(ArgumentError, 'scope must be ActiveRecord::Relation') unless scope.is_a?(ActiveRecord::Relation)

policy = policy_class(user, scope.klass).new(user:, scope:, mode: :scope)

policy.public_send(action.to_sym)
ena

def permissions
list = {}

policy_constants.each do |constant]
klass = policy_class(user, constant)

policy = klass.new(user:, mc 5 )

constant_result = klass.public_instance_methods(false).each_with_object({}) do }method, result
result[method.to_sym] = policy.public_send(method)

end

list[constant.to_s.underscore.to_sym] = constant_result
end

list
end

def policy_class(user, record_class)
role = user.role.camelize

"Policy::#{record_class}::Roles::#{role}".safe_constantize ||} ise(NotDefinedError, co ass:, role:)
end
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1. LO—KRICH L THERPHZ3HD%ZHIET S (record E—FK)

project = Project.find(1)

readable_project = Policy.authorize(current_user, project,

TR CAREDBBR SN TS &
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def authorize(record, action) VERD U 5 X%

raise(ArgumentError, 'record cannot be nil') unless record record €— F T new

policy = policy_class(user, record.class).new(user:

raise(NotAuthorizedError, policy:, action:) unless policy.public_send(action.to_sym)

policy.record
end
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def authorize(record, action) VERD Y S X%

aise(ArgumentError, ‘record cannot be nil') unless record record €— KT new

policy = policy_class(user, record.class).new(

aise(NotAuthorizedError, policy:, action:) unless policy.public_send(action.to_sym)

policy.record

end 1BRIER DT E1T
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module Policy
class Context

def authorize(record, action)
e(ArgumentError, 'record cannot be nil') unless record

policy = policy_class(user, record.class).new(user:, record:,

se(NotAuthorizedError, policy:, action:) unless policy.public_send(action.to_sym)

policy.record
end

def authorize_scope(scope, action)
(ArgumentError, 'scope cannot be nil') unless scope
(ArgumentError, 'scope must be ActiveRecord::Relation') unless scope.is_a?(ActiveRecord::Relation)

policy = policy_class(user, scope.klass).new(user:, scope:, mode: :scope)

policy.public_send(action.to_sym)
ena

def permissions
list = {}

policy_constants.each do |constant]
klass = policy_class(user, constant)

policy = klass.new(user:, mc 5 )

constant_result = klass.public_instance_methods(false).each_with_object({}) do }method, result
result[method.to_sym] = policy.public_send(method)

end

list[constant.to_s.underscore.to_sym] = constant_result
end

list
end

def policy_class(user, record_class)
role = user.role.camelize

"Policy::#{record_class}::Roles::#{role}".safe_constantize ||} ise(NotDefinedError, co ass:, role:)
end
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2. ERD'H B L I— RDAHITKD AL (scope E—R)

projects = Project.all

readable_projects = Policy.authorize_scope(current_user, projects, :

R EBENBARIN TS &:
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def authorize_scope(scope, action)
‘aise(ArgumentError, 'scope cannot be nil') unless scope
raise(ArgumentError, 'scope must be ActiveRecord::Relation') unless scope.is_a?(ActiveRecord::Relation)

policy = policy_class(user, scope.klass).ne

policy.public_send(action.to_sym)

= ROV 5 2%
scope E— F T new
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def authorize_scope(scope, action)
2 (ArgumentError, '
Lse(ArgumentError, 'c 8 MUS - on') unless .1s_a?(ActiveRecord: :Relation)

policy = policy_class(user, scope.klass).

policy.public_send(action.to_sym)

¥ERDY 5 X%
scope E— F T new
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module Policy
class Context

def authorize(record, action)
e(ArgumentError, 'record cannot be nil') unless record

policy = policy_class(user, record.class).new(user:, record:,

se(NotAuthorizedError, policy:, action:) unless policy.public_send(action.to_sym)

policy.record
end

def authorize_scope(scope, action)
(ArgumentError, 'scope cannot be nil') unless scope
(ArgumentError, 'scope must be ActiveRecord::Relation') unless scope.is_a?(ActiveRecord::Relation)

policy = policy_class(user, scope.klass).new(user:, scope:, mode: :scope)

policy.public_send(action.to_sym)
ena

def permissions
list = {}

policy_constants.each do |constant]
klass = policy_class(user, constant)

policy = klass.new(user:, mc 5 )

constant_result = klass.public_instance_methods(false).each_with_object({}) do }method, result
result[method.to_sym] = policy.public_send(method)

end

list[constant.to_s.underscore.to_sym] = constant_result
end

list
end

def policy_class(user, record_class)
role = user.role.camelize

"Policy::#{record_class}::Roles::#{role}".safe_constantize ||} ise(NotDefinedError, co ass:, role:)
end
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permissions = Policy.permissions(current_user)

FICTSAT7MNIELTHERTS




def permissions
list = {}

policy_constants.each do |constant]
klass = policy_class(user, constant)
policy = klass.new(user:, mode: :1list)

constant_result = klass.public_instance_methods(false).each_with_object({}) do !method, result]
result[method.to_sym] = policy.public_send(method)
end

list[constant.to_s.underscore.to_sym] = constant_result
end

list
end

def policy_constants
reject_constants = [:Base, :Context, :Error, :NotAuthorizedError, :NotDefinedError]

Policy.constants.reject { |constant| reject_constants.include?(constant) }
end




def permissions
list = {}

policy_constants.each do |constant]
klass = policy_class(user, constant)
policy = klass.new(user:, mode: :1list)

constant_result = klass.public_instance_methods(false).each_with_object({}) do !method, result]
result[method.to_sym] = policy.public_send(method)
end

list[constant.to_s.underscore.to_sym] = constant_result
end

list
end

def policy_constants
reject_constants = [:Base, :Context, :Error, :NotAuthorizedError, :NotDefinedError]

Policy.constants.reject { |constant| reject_constants.include?(constant) }
end




def permissions
list = {}

policy_constants.each do |constant]
klass = policy_class(user, constant)
policy = klass.new(user:, mode: :list)

constant_result = klass.public_instance_methods(false).each_with_object({}) do |method, result]
result[method.to_sym] = policy.public_send(method)
end

list[constant.to_s.underscore.to_sym] = constant_result
end

list
end

def policy_constants
reject_constants = [:Base, :Context, :Error, :NotAuthorizedError, :NotDefinedError]

Policy.constants.reject { |constant]| reject_constants.include?(constant) }
end
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module Policy
class Base

def initialize(user:, record: , scope: , mode:
@user = user
@record = record
@scope = scope
@mode = mode

end

def read
(NotImplementedError)

end

def create
(NotImplementedError)

end

def update
(NotImplementedError)

end

def delete
a(NotImplementedError)
end
end

end




initialize(user:, record: , scope: , mode:

Quser = user AEICHELIFR
@ d = d e RS
escope = scape. HEDE— R

@mode = mode

read
(NotImplementedError)

create
(NotImplementedError)

update
(NotImplementedError)

end

lef delete
(NotImplementedError)




initialize(user:, record:

@user = user
@record = record
@scope = scope
@mode = mode

f read
(NotImplementedError)

create
(NotImplementedError)

update
(NotImplementedError)

delete
(NotImplementedError)

, scope:

, mode:

BEDOT 74 b LT CRUD ZEH
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module Policy
module Project
class Base < Policy::Base
def author?
record.author == user
end

def assignee?
record.assignees.exists?(
end

def author_scope
scope.where(
end

def assignee_scope
scope.left_joins( ) .where( 5 user }).distinct

end

def author_or_assignee_scope

base_scope = scope.left_joins( )

base_scope.where( user).or(base_scope.where( user })).distinct
end

def view_settings_page
(NotImplementedError)
end
end




record.author == user
end record E— FRHOFHZEE

f assignee?
record.assignees.exists?(
end

author_scope
scope.where(
end

def assignee_scope
scope.left_joins( ) .where( user }).distinct

end

author_or_assignee_scope
base_scope = scope.left_joins( )
base_scope.where( user).or(base_scope.where( user })).distinct

end

def view_settings_page
(NotImplementedError)




module Policy
module Project
class Base < Policy::Base
def author?
record.author == user

end scope E— FRDOFMAZER

def assignee?
record.assignees.exists?(1i
end

def author_scope
scope.where(
end

def assignee_scope
scope.left_joins(:as n ) .where(assti user }).distinct
end

def author_or_assignee_scope

base_scope = scope.left_joins(:as n )

base_scope.where(: C user).or(base_scope.where(ass ) d: user })).distinct
end

def view_settings_page
(NotImplementedError)
end
end
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record.author == user
end

f assignee?
record.assignees.exists?(
end

author_scope
scope.where(
end

def assignee_scope
scope.left_joins( ) .where( user }).distinct

end

author_or_assignee_scope
base_scope = scope.left_joins( )
base_scope.where( user).or(base_g

end

def view_settings_page CRUD Lxgl\o)%:éflﬁd)iahu

(NotImplementedError)
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module Policy
module Project
module Roles
class Manager < Base

def update
case mode
when
[
when :
assignee? || author?

when
author_or_assignee_scope
end
end

def view_settings_page
case mode
when

when
when

scope
end
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r HEOREY 52 TEEL &M
‘Ms'lgnee? Il author? %ﬁﬁﬁ L/T*U/F:E%%iﬁjé

author_or_assignee_scope

def view_settings_page
mode

FHELBZWIEEIT
Boolean #5229 %




[ ) ]

assignee? || author?

author_or_assignee_scope

def view_settings_page

mode

WNROERKT 5 A TER LICFH
eERALTHEZRIRIT S

ZHEI B VEEIE
scope 7' scope.none 5k 3 3




BAMNALL O— RHARELRIE
or %D F—% 5T ﬁ?‘

assignee? || author?

author_or_assignee_scope

def view_settings_page

oo e KHEHBVEEIZ
Boolean 3¢ 7|<3'%




F view_settings_page
: mode
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module Policy
module Report
module Roles
class External < Base
def approve
case mode
when :list

when :record
group_member? && (project_leader? || (reviewer? && !author?))
when :scor

end
end
end
end

end

end
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module Policy TR
module Report
module Roles

. class External < Base
EE def approve

Pt
case mode &3
when :

i

when :recorc
group_member? && (project_leader? || (reviewer? && !author?))
when

end
end
end
end
end
end
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clzsi F"rzjectsController < ApplicationControll read T3 projects (24 DA
ef index

projects = Project.all

@projects = Policy.authorize_scope(current_user, projects, :re

end

def update
project = Project.find(params[:id])

@project = Policy.authorize(current_user, project,
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lass Projects i - ' tonControll 5 — 22 A S )
ch. s if’ro_,ects;éisntroller < ApplicationContro read T3 projects LD
def index
projects = Project.all

@projects = Policy.authorize_scope(current_user, projects,

end

update TZ 3 project H#I7E

def update
project = Project.find(params[:id])

@project = Policy.authorize(current_user, project,
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class ProjectsController < ApplicationControll - — 22 N S ) 4
=s d-" ‘ B read TE 3 projects IC&DIAD
def index

projects = Project.all

@projects = Policy.authorize_scope(current_user, projects,

update TZ 3 project H#I7E

def update
project = Project.find(params[:id])

@project = Policy.authorize(current_user, project,

MERRICHRTEL TUL\ B D TR
BRDTWICHEINLRL)
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assignee? |! author?

Ny Ehh B

author_or_assignee_scope




author?
record.author == user
end

f assignee?
record.assignees.exists?( user)
end

f author_scope
scope.where(
end

f assignee_scope
scope.left_joins( ) .where( user }).distinct

end

f author_or_assignee_scope
base_scope = scope.left_joins( )
base_scope.where( user).or(base_scope.where( user })).distinct

view_settings_page
(NotImplementedError)
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247>k (NeXtJS) /\O)E!/EE

® Rails 7217 T# < Next.js DEMNEBFEBHIFTUVS
O MERO—BZEIH. Nextjs BB TRIERICAEFITIERRICHALL O

Permission policy="project" method="update"
Button>#REE 9 %</Button
Permission

Permission policy="project" method="delete"

Button>HlIBR 9 5</Button
Permission
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Permission policy="project" method="update"
Button>#REE 9 % </Button

Permission

Permission policy="project" method="delete"
Button>HlER 9 %</Button

Permission
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Next.js H*'5 Rails NI X k

T — X DS
T—XDEE
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Next.js H*'5 Rails NI X k

Module IC& B HIE
record & scope E—F
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Next.js H*'5 Rails NI X k

AroiLs ™ NEXT.
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Next.js D5 Rails NJ I I X k

) NEXT
A rans XTos
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Next.js DIEREIE

Arois ™= NEXT.:

QPLEX




Next.js DIEREIE
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Arois ™= NEXT.:
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Next.js DIEREIE

Module IZ & 3 HIE
list E— F

Arois ™= NEXT.:
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Next.js DIEREIE

Module IZ & 3 HIE

list E— F

AroiLs ™ NEXT.

ERO—EBZEY
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"project": {
"read":
"create": true,
"update": ["author", "assignee"],
"delete": false,
"view_settings_page": fal

b
n I‘eport" . {




"project": {
"read":
"create": true,
"update": ["author", "assignee"],
"delete": false,
"view_settings_page": fal

}s
"report": {
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"project": {
"read":
"create": true,
"update": ["author", "assignee"],
"delete": false,
"view_settings_page": fal

}s
"report": {




"project”: { BRI L O— RARERIEE E
"read": tri or ZHEDF—DEF

"create": true,
"update": ["author", "assignee"],
"delete": false,

"view_settings_page":
}
"report": {
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newPolicyMap = Object.entries(permissions).reduce((map, [k])
key = k Permi S
policy = Poli ory.create(key, permissions, { user })

if (policy) map[key] = policy
return map
d [3 P l:‘ i
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.entries(permissions).reduce((map, [k])

¥EPRD U 5 X =4FE

ory.create(key, permissions, { user })

if (policy) map[key] = policy
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export type PolicyMap = {
project: ProjectPolicy

export class PolicyFactory {
ic create<K extends keyof PolicyMap>(
policyKey: K,
permissions: Permissions,
context: PolicyContext,
): PolicyMap[K] | undefined {
switch (policyKey) {
case 'project':
return new ProjectPolicy(permissions['project'], context) as PolicyMap[K]

default: {
return undefin
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export type PolicyMap = {
project: ProjectPolicy

export class PolicyFactory {
> create<K extends keyof PolicyMap>(

policyKey: K,

permissions: Permissions,

context: PolicyContext,

): PolicyMap[K] | undefined {
switch (policyKey) {
case 'project':

¥ERD U 5 A =HFE

return new ProjectPolicy(permissions['project'], context) as PolicyMap[K]

default: {
return undefin
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export type PolicyContext = {
user: User

bstract class BasePolicy<P extends Permissions[keyof Permissions]> {

tructor(protected permissions: P, protected context: PolicyContext) {}

tract read(...model: unknown[]): boolean
tract create(...model: unknown[]): boolean
ract update(...model: unknown[]): boolean
abstract delete(...model: unknown[]): boolean
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export type PolicyContext = {
user: User

lass BasePolicy<P extends Permissions[keyof Permissions]> {
yrotected permissions: P, protected context: PolicyContext) {}

)stract read(...model: unknown[]): boolean
abstract create(...model: unknown[]): boolean
ract update(...model: unknown[]): boolean
ract delete(...model: unknown[]): boolean
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export type PolicyContext = {
user: User

lass BasePolicy<P extends Permissions[keyof Permissions]> {
yrotected permissions: P, protected context: PolicyContext) {}

ict read(...model: unknown[]): boolean

abstract create(...model: unknown[]): boolean BEDT T 4L LT
ct update(...model: unknown[]): boolean CRUD ZE %

ract delete(...model: unknown[]): boolean
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ProjectPolicy 1 ePolicy<Per ons['project']> {

e author = (project: Proj
ean(project.author && project.author.id s.context.user.id)

e assignee = (project: Pro
rn extractNodes(project.assignees).some((v) v.id .context.user.id)

i
is.permissions[

update

if (typ permission
return permission

}

if (project
return fa

n permission.some((key)
tch (toCamelCase(key)) {

author(project)

.assignee(project)

delete = (): boolean {
return .permissions[

viewSettingsPage = (): boolean
return .permissions[
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export class ProjectPolicy extends BasePolicy<Permissions['project']> {

read = (): boolean {
return Ls.permissions['read']

create = (): boolean => {
return ls.permissions['create']

update = (): boolean =>

delete = (): boolean => {
return this.permissions['delete']

viewSettingsPage = (): boolean => {
return this.permissions['viewSettingsPage']




export class ProjectPolicy extends BasePolicy<Permissions['project']> {
yrivate author = (project: Project): boolean => {
return Boolean(project.author & project.author.id === this.context.user.id)
I
rivate assignee = (project: Project): boolean => {
return extractNodes(project.assignees).some((v) => v.id === this.context.user.id)
}

update = (): boolean => {

st permission = this.permissions['update']
if (typeof permission === 'boolean') {
return permission
}
if (project === undefined) {
return false
}

return permission.some((key) => {
switch (toCamelCase(key)) {

case 'author':

return this.author(project)
case 'assignee':

return this.assignee(project)
default:

return fal

b
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export class ProjectPolicy extends BasePolicy<Permissions['project']> {
e author = (project: Project): boolean {

return Boolean(project.author && project.author.id === this.context.user.id)
}
e assignee = (project: Project): boolean {
return extractNodes(project.assignees).some((v) => v.id === this.context.user.id)
}

update = (): boolean {

t permission = this.permissions['update']
if (typeof permission === 'boolean') { g{q:% ,_\_.%
return permission S 0=
}
if (project === undefined) {
return
}

return permission.some((key) => {
switch (toCamelCase(key)) {
case 'author':

return this.author(project)
case 'assignee':
return this.assignee(project)
default:
return fal
)
1
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export class ProjectPolicy extends BasePolicy<Permissions['project']> {
e author = (project: Project): boolean {

return Boolean(project.author && project.author.id === this.context.user.id)
}
e assignee = (project: Project): boolean {
return extractNodes(project.assignees).some((v) => v.id === this.context.user.id)
}

update = (): boolean {

t permission = this.permissions['update']
if (typeof permission === 'boolean') { [ 2 ] 8.,
return permission #IJA-F_b Boolean @i’m_:l
}
if (project === undefined) {
return
}

return permission.some((key) => {
switch (toCamelCase(key)) {
case 'author':

return this.author(project)
case 'assignee':
return this.assignee(project)
default:
return fal
)
1
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export class ProjectPolicy extends BasePolicy<Permissions['project']> {
> author = (project: Project): boolean {

return Boolean(project.author && project.author.id === this.context.user.id)
}
> assignee = (project: Project): boolean {
return extractNodes(project.assignees).some((v) => v.id === s.context.user.id)
}

update = (): boolean {

t permission = this.permissions['update']
if (typeof permission === 'boolean') {
return permission
}
if (project === undefined) {

return false E1ZBE,‘J7‘3: l/ ad— I\‘\b\\@ L\i’%é

return permission.some((key) => {
switch (toCamelCase(key)) {
case 'author':

return this.author(project)
case 'assignee':
return this.assignee(project)
default:
return
)
1
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export class ProjectPolicy extends BasePolicy<Permissions['project']> {
e author = (project: Project): boolean {

return Boolean(project.author && project.author.id === this.context.user.id)
}
e assignee = (project: Project): boolean {
return extractNodes(project.assignees).some((v) => v.id === this.context.user.id)
}

update = (): boolean {

t permission = this.permissions['update']
if (typeof permission === 'boolean') {
return permission
}
if (project === undefined) {
return 1
}

return permission.some((key) => {
switch (toCamelCase(key)) {
case 'author':

return this.author(project)
case 'assignee': or %#FU)*IJEE%/?’B
return this.assignee(project)
default:
return fal
)
b
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checkPermission = useCallback(
<P ends PolicyKeys, M extends PolicyMethodKey<P>>(
policyKey: P,
methodKey: M,
model?: ModelType<P, M>,
: boolean => {
t validMethod = (policy: PolicyMap[P], method: M) => {

return Object.prototype.hasOwnProperty.call(policy, method as string)

1

t policy = policyMap[policyKey]
if (!policy) return fa

method = validMethod(policy, methodKey) ? policy[methodKey] :

if (typeof method !== 'function') {
throw new Error('Permission method(${methodKey}) is not function in policy(${policyKey})")

if (model) {
return method(...[model])

i

return method()
h
[policyMapl,
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checkPermission = useCallback(
<P & PolicyKeys, M extends PolicyMethodKey<P>>(
policyKey: P,
methodKey: M,
model?: ModelType<P, M>,
: boolean {
validMethod = (policy: PolicyMap[P], method: M) => {

return Object.prototype.hasOwnProperty.call(policy, method as string)

1

policy = policyMap[policyKey] j{l’%t){@ L\i:%é‘

if (!policy) return

method = validMethod(policy, methodKey) ? policy[methodKey] :

if (typeof method !== 'function') {
throw Error( Permission method(${methodKey}) is not function in policy(${policyKey})")

if (model) {
return method(...[model])

i

return method()
h
[policyMapl,
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checkPermission = useCallback(
<P ends PolicyKeys, M extends PolicyMethodKey<P>>(
policyKey: P,
methodKey: M,
model?: ModelType<P, M>,
: boolean => {
validMethod = (policy: PolicyMap[P], method: M) => {

return Object.prototype.hasOwnProperty.call(policy, method as string)

1

t policy = policyMap[policyKey]
if (!policy) return fa

method = validMethod(policy, methodKey) ? policy[methodKey] :

if (typeof method == 'function') { BIED B WSS

throw Error( Permission method(${methodKey}) is not function in policy(${policyKey})")

if (model) {
return method(...[model])

i

return method()
h
[policyMapl,
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checkPermission = useCallback(
<P & PolicyKeys, M extends PolicyMethodKey<P>>(
policyKey: P,
methodKey: M,
model?: ModelType<P, M>,
: boolean {
validMethod = (policy: PolicyMap[P], method: M) {

return Object.prototype.hasOwnProperty.call(policy, method as string)

1

policy = policyMap[policyKey]
if (!policy) return

method = validMethod(policy, methodKey) ? policy[methodKey] :

if (typeof method !== 'function') {
throw Error( Permission method(${methodKey}) is not function in policy(${policyKey})")

ﬁr'(e?\cj(:(r?lnieihod( ...[model]) E{ZISE,‘J 73: I/ :I — I\“ 73{?5’% :_k ?h—C L\ 5 i’%é

i

return method()
h
[policyMapl,
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checkPermission = useCallback(
<P & PolicyKeys, M extends PolicyMethodKey<P>>(
policyKey: P,
methodKey: M,
model?: ModelType<P, M>,
: boolean {
validMethod = (policy: PolicyMap[P], method: M) {

return Object.prototype.hasOwnProperty.call(policy, method as string)

1

policy = policyMap[policyKey]
if (!policy) return

method = validMethod(policy, methodKey) ? policy[methodKey] :

if (typeof method !== 'function') {
throw Error( Permission method(${methodKey}) is not function in policy(${policyKey})")

if (model) {
return method(. . .[modglds

}
return method() E1ZISE,‘J73: l/:l_ Pb{j:alﬁféh—t L\@L\i%é
1

[policyMapl,
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checkPermission('project', ' , 1 model: project})
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checkPermission( 'project', 'update', { model: project})

R EBENBEREINTWVWS &:
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export const Permission = <
P extends PolicyKeys,
M extends PolicyMethodKey<P>,
>({
policy,
method,
model,
fallback,
children,
: Props<P, M, Strict>): ReactNode => {
nst result = checkPermission(policy, method, { model: })

return result ? <>{children}</> : fallback || null
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Permission policy="project

" method="ur e" model={project} fallback={<PermissionDenied

FEPRIC & B Ul Ol %
EEMICEERTESRLS5ICLTVWS
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project @ update DIERHL A WEEIE
mERI VIFRTEINERL

" method="update" model={project} fallback=

FEPRIC & B Ul Ol %
EEMICEERTESRLS5ICLTVWS
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" method="update" model={project} fallback=

FEPRIC & % Ul OFliE%
BEEMICEERTESLSICLTVWS
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" method="update" model={project} fallback=

FEPRIC & % Ul OFliE%
BEEMICEERTESLSICLTVWS
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model={project} fallback=

FEPRIC & % Ul OFliE%
BEEMICEERTESLSICLTVWS
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