
Shinichi Maeshima(@willnet)
Kaigi on Rails 2025

rails g authentication から
学ぶ Rails8.0 時代の認証

2025/09/27

今日は 9 月 27 日ですね

なんの日でしょうか？

誕生日でした🎉🎂

Shinichi Maeshima

 
 



@netwillnet
@willnet
https://blog.willnet.in

Willnet Inc.

ginza.rb やってます

技術顧問業をしています

Weʼre not hiring!

顧問先は週 1 程度
空きあります

今日は認証の話をします

Rails で認証といえば

devise はダントツ

devise の特徴
• warden の上に作られている認証ライブラリ

• warden は Rack アプリケーション向けに認証機能を追加するライブラリ

• モジュールを追加すると機能が増える (Confirmable 、 Recoverable など)

• devise を更に拡張したライブラリが数多くある

• 2 要素認証 (devise-two-factor) 、メール招待 (devise̲ invitable) など

• 利用例やカスタマイズ例が豊富

• おそらく仕事で認証ライブラリをいれる、となったときに一番最初に候補に上がる
gem

devise は初心者にオススメできない
• 公式 README に注意書きがある

• > If you are building your first Rails application, we recommend you do not use
Devise. Devise requires a good understanding of the Rails Framework. In such cases,
we advise you to start a simple authentication system from scratch

• もしあなたが初めて Rails アプリケーションを作るのであれば、 Devise を使わないことをおす
すめします。 Devise を使うには Rails フレームワークについて十分な理解が必要です。そのよ
うな場合には、ゼロからシンプルな認証システムを作ることをおすすめします (ChatGPT 訳)

• devise の振る舞いを変えたい、とか調査をしたいときに rack, warden, devise, rails のコード
ベースを行ったり来たりする必要があり大変

• 各社、限られた devise 職人だけが devise のカスタマイズを担当することになりがち

とはいえ devise をみんな使う
日々

巷に数多くある他の認証用 gem
も devise の牙城を崩す気配は今
のところ見えない (個人の感想で
す)

そんな中 Rails8.0 で
rails g authentication が使えるようになった

なぜいまになって認証ジェネレータが追加されたのか

“Rails now include all the key building blocks needed to do
basic authentication, but many new developers are still
uncertain of how to put them together, so they end up leaning
on all-in-one gems that hide the mechanics. While these gems
are great, and many people enjoy using them, they should not
be seen as a necessity. We can teach Rails developers how to
use the basic blocks by adding a basic authentication
generator that essentially works as a scaffold, but for
authentication.”

なぜいまになって認証ジェネレータが追加されたのか
(ChatGPT 訳)

“ Rails には、基本的な認証を実装するために必要な部品はすべて揃っ
ています。しかし、多くの初心者開発者はそれらをどう組み合わせれ
ばよいのか分からず、仕組みが隠されたオールインワンの gem に頼っ
てしまうことがよくあります。こうした gem は便利で多くの人に使わ
れていますが、必須のものと考える必要はありません。 Rails 開発者に
は、基本的な部品を組み合わせて使う方法を教えられます。そのため
に「認証用のジェネレータ」を追加し、認証のための雛形
（ scaffold ）のように使えるようにすればよいのです。”

なぜいまになって認証ジェネレータが追加されたのか (補足 1)

• そもそも Rails は認証用のメソッド (has̲ secure̲ password) を昔 (Rails
>=3.1) から備えていたけれど、部品だけの形で提供されているためどのよう
に使うかがわかりづらい

• 結果として gem を入れて README の通りに設定すれば OK な gem(例 : devise)
が選択されることが多かった

• が、先程話したように devise は初心者にはおすすめできない

• 認証用のメソッドをどのように組み合わせるとよいか道を示すためのツール
として認証ジェネレータを作った

なぜいまになって認証ジェネレータが追加されたのか (補足 2)

• DHH が CTO を務める 37signals 社の製品に Campfire (https://once.com/
campfire) がある

• ここで認証機能のために使われたコードがベースとなっている (明言されている
わけではない)

• DHH が rails/rails に認証ジェネレータに関する Issue を立てた時期
(2023/12/27) と Campfire をリリースした時期 (2024/01/19) が近いので、お
そらく Campfire のコードを使って認証ジェネレータを作れるな、と考えたので
はないでしょうか (明言されているわけではない)

• Rails7.1~7.2 あたりで抽象度高く認証機能を作るための機能追加がされてきたとい
うのもありそう

Rails8.0 からは認証ジェネレータを使えば OK ？
• ではない

• 認証ジェネレータが提供している機能は現時点で以下のみ

• メールアドレスとパスワードを利用したログイン

• ログアウト

• パスワードリセット

認証ジェネレータと devise の関係
• 認証ジェネレータはあくまでシンプルな認証機能の使い方を示すもの

• すべての認証ユースケースを解決するためのものではない

• 今後数年は次のように棲み分けがされるのではないでしょうか

• シンプルな認証機能だけで賄えるアプリケーションは認証ジェネレータ

• 多様な認証機能が必要なアプリケーションは devise をはじめとしたサード
パーティの gem

少し話題を変えます

認証はセキュリティに直結してい
る

セキュリティの側面から認証を捉
える必要がある

認証ジェネレータを使うリスク
• 認証ジェネレータで生成したコードに脆弱性が含まれていたときに対応する

のがやや難しい

• devise などの gem を利用していれば dependabot などで脆弱性に気づき、
bundle update で対応できる

• もし Rails8.0 の提供しているものに限らず認証ジェネレータを利用する場合は
ジェネレータのアップグレード情報を注意深くウォッチする必要がある

カスタマイズに関するリスク
• 認証に関する既存のコードをカスタマイズするときにはセキュリティに関す

る知識と細心の注意が必要

• 「よくわからないけどこれをああしたら動いた」だとまずい

• devise などの gem をそのまま使うだけなら問題は少ないけど、なにかしらカ
スタマイズすることありますよね？

認証機能は◯◯を使えば OK 、で
はなく我々は認証やセキュリティ
についてできる限り知っておく必
要がある

認証やセキュリティについてどうやって学ぶ？
• 書籍で学ぶ

• 安全なウェブサイトの作り方 (https://www.ipa.go.jp/security/vuln/
websecurity/about.html)

• 体系的に学ぶ 安全な Web アプリケーションの作り方 第 2版 (https://
www.sbcr.jp/product/4797393163/)

• 認証ジェネレータから生成されるコードで学ぶ

認証やセキュリティについてどうやって学ぶ？
• 書籍で学ぶ

• 安全なウェブサイトの作り方 (https://www.ipa.go.jp/security/vuln/
websecurity/about.html)

• 体系的に学ぶ 安全な Web アプリケーションの作り方 第 2版 (https://
www.sbcr.jp/product/4797393163/)

• 認証ジェネレータから生成されるコードで学ぶ

認証ジェネレータから生成されるコードで学ぶ
• 僕は 17年前に restful-authentication(Rails1,2 向けの認証ジェネレータ) で認

証の流れを学びました

• Rails8.0 の認証ジェネレータでも同様のことができるはず

• ただし 17年前と比べて高度に抽象化されているので解説なしだと難しい

解説します
• 前提 : Rails8.1.0.beta1

まず概要から

認証ジェネレータで生成される機能
• メールアドレスとパスワードを利用したログイン

• ログアウト

• パスワードリセット

• ユーザ登録はないので自分で作る必要がある

認証ジェネレータで生成されるモデル
• User

• Session

• ユーザのログイン状態を管理するためのモデル

• Current

• ログインユーザに Current.user でアクセスするための Current Attributes

認証ジェネレータで生成されるコントローラ
• sessions̲ controller.rb

• ログイン、ログアウト用のコントローラ

• passwords̲ controller.rb

• パスワードリセット用のコントローラ

• concerns/authentication.rb

• 認証関連のヘルパメソッドが書かれているモジュール

allow̲ unauthenticated̲ access
• ログイン確認する before̲ action をスキップしている

• 直接 skip̲ before̲ action を書くのに慣れている人々からすると微妙だけど、
初見の人に意味が伝わりやすいのはこっち

rate̲ limit
• Rails7.2 から追加

• この書き方だと、同じ IP アドレスのクライアントから 3 分以内に 11回以上ログ
インを試行するとそれ以降のアクセスは自動でログインページにリダイレクト
される

• ブルートフォースアタックを防ぐのに利用している

• このレベルの要件であれば rack-attack いらずになってべんり

ログインフォーム

認証用のアクション

このメソッドどこから来た？

生成された User モデルのコード

生成された User モデルのコード
ここで authenticate̲ by が追加されている

has̲ secure̲ password
• rails が提供する認証機能のメイン

• 主な機能

• ユーザ作成時のパスワードを BCrypt でハッシュ化して格納

• ユーザ作成時のパスワードのバリデーションを追加

• ログイン時のパスワード比較用のメソッドを追加

• パスワードリセット時のメールに含めるトークンの発行と検証用のメソッ
ドを追加

has̲ secure̲ password - パスワードのハッシュ化

has̲ secure̲ password - BCrypt とは
• パスワードによく用いられるハッシュ関数

• 他のハッシュ関数よりも時間がかかる

• ブルートフォースアタックがやりづらくなる

• キー拡張と呼ばれる処理を行う回数 (cost) を調整することでパスワード認証時間を増減できる

• devise や bcrypt-ruby は 2 の 12乗回 (cost 12) がデフォルト

• gitlab は cost13

• 昔から devise を利用しているひとはもっと少ない可能性があるので増やすのを推奨

• ソルトやレインボーテーブルについては省略

has̲ secure̲ password - パスワードのバリデーション

• 空文字だったらエラー

• 72バイトより大きかったらエラー

• BCrypt で使えるパスワードは 72バイトまでという制約がある

• password̲ confirmation が存在して password と違ったらエラー

• 以上

• パスワードの複雑さなどをチェックしたい場合は自分で実装する

has̲ secure̲ password - ログイン時のパスワードの比較 (1)

• authenticate メソッドが用意されている

has̲ secure̲ password - ログイン時のパスワードの比較 (2)

• Rails7.1 以降は authenticate̲ by メソッドが使える

• 短いだけではなくてタイミングアタックを防止してくれる

• 素朴な実装だと「メールアドレスまたはパスワードが間違えています」と表
示してもレスポンス時間で登録済みメールアドレスかどうかの確認ができて
しまう

• authenticate̲ by はメールアドレスが DB にあってもなくても同じくらいの
時間でレスポンスを返す

生成された User モデルのコード (再掲)

これはなに？

normalizes

• 属性を正規化するメソッド (Rails7.1 から追加)

• 属性にアサインするタイミングと where などのクエリを実行するタイミング
で lambda が実行される

• 入力したメールアドレスの前後にスペースが入ったり、大文字小文字が混在し
ていても統一した形式で扱える

• メールアドレス以外にも電話番号とか郵便番号とかでべんりに使える

ログインするためのメソッド

User モデルと 1対多関連の
Session モデルを create している

Session モデル

Session モデルは特別な実装を持っていない

Session モデルって何用途？
• User のログイン情報を管理している

• これが DB 中にレコードとして存在する、というのがログイン状態を成立さ
せる条件の一つになっている

• しかし巷では次のように User モデルの id を session に入れるコードがよく使わ
れている

• devise なども session を利用している

Session モデルって何用途？
• ログイン時の IP アドレスとユーザエージェントを保持している

• 新しい環境からログインしたときに警告する、ができる

• 「ユーザが乗っ取られたときに今のログインセッションを消す」がやりやすい

• cookies セッションだとブラウザ側にデータがあるので消せない

• redis にセッションを格納すると消せるけど、 id は value側にシリアライズし
た形で存在するので redis のデータを全件調べる必要があって遅い

Current.session で Session モデルに
アクセスできるようにしている

Current モデルって何用途？

Current モデルって何用途？

ActiveSupport::CurrentAttributes
• スレッド (もしくはファイバー)ごとに分かれていてリクエストのたびにリセッ

トされるグローバル変数

• 例えば Current.user でどこからでもログインユーザの情報にアクセスできる

• 生成コードでは Current.session が truthy であればログイン済みとしている

• グローバル変数なので用法用量にお気をつけてご利用ください

cookies に改ざん防止用トークンをつけた
session.id を設定している

session ではなく cookies を利用しているのはなぜ？

• (さっきも書いたけど) 基本的には次のように session を利用することが多い

session ではなく cookies を利用しているのはなぜ？

• Action Cable で利用するため

• Action Cable は session を使えない

• 接続確立時の cookies にアクセスすることはできるので、 Action Cable を利
用するときは cookies を使うのがお約束

認証ジェネレータは Action Cable 用のコードも生成している

ログイン後の URL に遷移する

ログイン後の URL

ログイン必須なアクションで実行される
フック

セッションの取得 (再開) を試みて
なければ認証をリクエストする

cookies に有効な Session モデルの id
が含まれていればログイン済み

未ログイン状態であればアクセスした
URL を session に一時保存して
ログインページにリダイレクト

ログアウト処理

ログインセッションの削除

Session モデルを削除

cookies からも session.id を
削除

ログイン・ログアウトについては
以上

次はパスワードリセット

文字が小さくなりすぎるので分割
します

パスワードリセット用の
メールアドレスを入力する
フォーム

対応するメールアドレスがあればパス
ワードリセット用のメールを送信する

適当なメールアドレスにパスワードリセット用の
メールを送るいたずら防止

reset.html.erb

メールの文面 (HTML)

reset.html.erb

パスワードリセット用のトークンを生成している

has̲ secure̲ password - password̲ reset̲ token

• has̲ secure̲ password を宣言すると password̲ reset̲ token が使える
(Rails8.0 から)

• モデルに紐づいた 15 分を有効期間とするトークンを自動生成できる

• 裏側では generates̲ token̲ for メソッド (Rails7.1 で追加) が使われてる

• パスワードが変更されたらトークンは失効されるようになっている

• 昔は DB にトークンを保存していたが、今では不要になってべんり

トークンが正しいかをチェック

これも has̲ secure̲ password で生成される
メソッド

トークンが不正だったらメールアドレス入力
フォームに戻す

新しいパスワードを入力するフォーム

新しいパスワードに更新する

パスワードの更新を試みる

パスワードを更新できたら該当ユーザのセッショ
ンを全部失効させる (セッションを乗っ取られた
ときにそのセッションを失効させる目的)

ログインページにリダイレクト

新しいパスワードと確認用のパスワードが一致
してなかったらもう一回フォームに戻す

パスワードリセットについては
以上

認証ジェネレータが生成するコー
ドから認証の流れについて解説し
てきました

素朴な流れは簡単でも細かく考え
出すと多くの考慮すべきポイント
(例 : ログインセッションをどう持
つのか) がある

知らないといけない知識もある
(例 : タイミングアタック)

認証機能のセキュリティを担保す
るには我々の技術力向上及び最新
情報のキャッチアップが不可欠

たいへんですが頑張ってやってい
きましょう💪

ちょっと自信がないなあ、という
方は…？

顧問先は週 1 程度
空きあります👀

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115

