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PR: I wrote a book

•「型システムのしくみ」
"Type Systems Distilled with TypeScript"
(A Japanese book)

• It explains how to write a type checker
… for a subset of TypeScript



PR: I wrote a book

• Inspired by「型システム入門 (TAPL)」
• "Types and Programming Languages"

(The most well-known textbook of type systems)

• It explains:
• Base type system
• Subtyping
• Recursive types
• Generics

… in TypeScript

I am one of the translators
of TAPL (Ja version)



PR: I wrote a book

• It uses TypeScript. Why?
• It sells better than Ruby
• First-class functions make it convenient

to explain the traditional type systems

• I want more contributors for Ruby types
• Interested in Steep or Sorbet? Check it out!

• Available at the bookstore (the 2nd floor)
• Book signing next break. Get one!



PR: IRB Treasure Hunt! (@ STORES booth)

https://ruby-quiz-2025.storesinc.tech/

by mame, hogelog, and ima1zumi
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•What is TypeProf?

• How to use TypeProf effectively

• Ruby's constant is 

• Conclusion
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What is TypeProf?

Ruby Editor support
• Error report, go to definition,

completion, etc.
• With minimal type annotations!

5.ti|

1 + "str"

TypeError

Do you mean:
5.times



Features

• Type inference, error/warning report

• Go to definition

• Completion

• Go to references

• Go to type references

• Automatic rename (method, constant)

• Inline RBS (→  rbs-inline)





Progresses since last RubyKaigi

• Called for contributions 
• Got about 100+ PRs (Thanks all contributors!)

• Supported for Ruby's full syntax

• Created TypeProf.wasm (a demo in browser by ruby.wasm)
• https://mame.github.io/typeprof.wasm/

• Improved for practical use cases

• Fixed a bug of infinite-loop Today's main topics
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How to use TypeProf for your projects

• Install VSCode "Ruby TypeProf" plugin

• Put typeprof.conf.json (or jsonc) in the top folder

• Reopen VSCode, and see if it works
• If it doesn't work well, that's a good chance to contribute

• For details, check my slide deck for RubyKaigi 2024

{
"typeprof_version": "experimental",
"rbs_dir": "sig/",

}



New features

• diagnostic_severity and analysis_unit_dirs

{
"typeprof_version": "experimental",
"rbs_dir": "sig/",
"diagnostic_severity": "info",
"analysis_unit_dirs": [
"lib/your_project/foo/",
"lib/your_project/bar/",

]
}

New features



"diagnostic_severity": change error level

• TypeProf still reports many false positives
• For a short-term solution, I provided a way to hide errors

severity: "error"
(default)

"warning" "info" "hint"

… and "none" are available



"analysis_unit_dirs": separate analysis

• You can specify directories to be analyzed together
• For a large project, you need to separate analysis for each directory
• API calls across file groups should be declared in RBS



TypeProf infers types by default

• … but as the project size grows, it will not scale

lib/typeprof/core

module TypeProf::Core
class Service
def update(path, text)
...

end
end

end

module TypeProf::LSP
serv = Core::Service.new
...
serv.update("path", "1+1")

end(String, String)
inferred

lib/typeprof



Separate analysis units

• Stop type inference between units

lib/typeprof/core

module TypeProf::Core
class Service
def update(path, text)
...

end
end

end

module TypeProf::LSP
serv = Core::Service.new
...
serv.update("path", "1+1")

end

lib/typeprof/core lib/typeprof/lsp

no inference



Write RBS between analysis units

module TypeProf::Core
class Service
def update(path, text)
...

end
end

end

module TypeProf::LSP
serv = Core::Service.new
...
serv.update("path", "1+1")

end

lib/typeprof/core lib/typeprof/lsp

module TypeProf::Core
class Service
def update_file: (String, String) -> void

end
end

sig/pub.rbs

typechecktypecheck
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Background: Ruby's constant is too complex

• Ruby's constant resolution
• C::Foo
• The current context has the priority

• M::Foo, P::Foo, Q::Foo
• The inheritance has the next priority

• B::Foo, A::Foo, ::Foo
• The scope has the last priority

• (Note: Z::Foo is not searched)

class P < Q
end

class A
class B < Z
class C < P
include M

Foo.new(...)
end

end
end What could this Foorefer to?



Constant analysis requires whole programs

# myapp/main.rb
class MyApp
String.new(...)

end

# myapp/string.rb
class MyApp
class String
end

end
This Stringshould be ::String…

No, that was MyApp::String



Constant analysis requires whole programs

# myapp/main.rb
class MyApp
String.new(...)

end

# myapp/string.rb
module M
class String
end

end
class MyApp
include M

end

This Stringshould be ::String…

Also indirectly makes
MyApp::Stringaccessible



How to handle constants in TypeProf

• Re-analyze existing constant resolutions:
• when a new constant is defined
• when the inheritance hierarchy is changed

# myapp/main.rb
class MyApp
String.new(...)

end

# myapp/string.rb
class MyApp
class String
end

end

MyApp::Stringis defined!
Re-analyze all "String" referencesUpdated: this is MyApp::String

Assume that this is ::String



How to handle constants in TypeProf

• Re-analyze existing constant resolutions:
• when a new constant is defined
• when the inheritance hierarchy is changed

# myapp/main.rb
class MyApp
String.new(...)

end

# myapp/string.rb
class MyApp
include M

end

This changes the inheritance!
Re-analyze all references under MyAppUpdated: this is MyApp::String

Assume that this is ::String



This mechanism caused an infinite-loop bug

• Found by @alpaca-tc

module M
module M
end

end

class MyApp
include M

end

0. There are ::Mand ::M::M

1. This M should be ::M
2. This changes the inheritance hierarchy!

Re-analyze all references under MyApp
3. Updated: This M should be ::M::M(!)
4. This changes the inheritance hierarchy!

Re-analyze all references under MyApp
5. Updated: This M should be ::M

Infinite
loop!



Similar problem was found in rbs-inline

• Constant could be inconsistent between ruby and rbs-inline

module M
module M
end

end

class MyApp
include M
include M

end

Ruby semantics: ::M::M

rbs-inline semantics: ::M
inconsistent



Solution: Give up the inheritance search

• … for the argument of include

• Ruby's constant resolution
• C::Foo
• The current context has the priority

• M::Foo, P::Foo, Q::Foo
• The inheritance has the next priority

• B::Foo, A::Foo, ::Foo
• The scope has the last priority

class P < Q
end

class A
class B
class C < P
include M

include Foo
end

end
end

What could
this Foo
refer to?

TypeProf no longer
searches for inheritance



This mechanism caused an infinite-loop bug

• Found by @alpaca-tc

module M
module M
end

end

class MyApp
include M

end

0. There are ::Mand ::M::M

1. This M should be ::M
2. This changes the inheritance!

Re-analyze all references under MyApp
3. Updated: This M should be ::M::M(!)
4. This changes the inheritance!

Re-analyze all references under MyApp
5. Updated: This M should be ::M

Infinite
loop!

TypeProf no longer
resolves this to ::M::M

Fixed!



Recap: Rewrite your Ruby Code

• … if you want to use TypeProf or rbs-inline (or Sorbet)
• Do not depend on the inheritance on constants

module M
module X
end

end

class MyApp
include M
include X

end

module M
module X
end

end

class MyApp
include M
include ::M::X

end

Don't do this! Do this



Today's talk

•What is TypeProf?

• How to use TypeProf (and recent improvements)

• Ruby's constant is 

• Conclusion

30



Conclusion

• TypeProf is getting production-ready
(hopefully)

• Future work
• Experiment with other than TypeProf itself
• Still need many improvements
• Contribution is truly welcome!

• Come meet me at the venue bookstore→
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