
Writing Ruby Scripts with
TypeProf

Yusuke Endoh (@mame)

RubyKaigi 2025

PR: I wrote a book

•「型システムのしくみ」
"Type Systems Distilled with TypeScript"
(A Japanese book)

• It explains how to write a type checker
… for a subset of TypeScript

PR: I wrote a book

• Inspired by「型システム入門 (TAPL)」
• "Types and Programming Languages"

(The most well-known textbook of type systems)

• It explains:
• Base type system
• Subtyping
• Recursive types
• Generics

… in TypeScript

I am one of the translators
of TAPL (Ja version)

PR: I wrote a book

• It uses TypeScript. Why?
• It sells better than Ruby
• First-class functions make it convenient

to explain the traditional type systems

• I want more contributors for Ruby types
• Interested in Steep or Sorbet? Check it out!

• Available at the bookstore (the 2nd floor)
• Book signing next break. Get one!

PR: IRB Treasure Hunt! (@ STORES booth)

https://ruby-quiz-2025.storesinc.tech/

by mame, hogelog, and ima1zumi

Today's talk

•What is TypeProf?

• How to use TypeProf effectively

• Ruby's constant is

• Conclusion

6

What is TypeProf?

Ruby Editor support
• Error report, go to definition,

completion, etc.
• With minimal type annotations!

5.ti|

1 + "str"

TypeError

Do you mean:
5.times

Features

• Type inference, error/warning report

• Go to definition

• Completion

• Go to references

• Go to type references

• Automatic rename (method, constant)

• Inline RBS (→ rbs-inline)

Progresses since last RubyKaigi

• Called for contributions
• Got about 100+ PRs (Thanks all contributors!)

• Supported for Ruby's full syntax

• Created TypeProf.wasm (a demo in browser by ruby.wasm)
• https://mame.github.io/typeprof.wasm/

• Improved for practical use cases

• Fixed a bug of infinite-loop Today's main topics

Today's talk

•What is TypeProf?

• How to use TypeProf (and recent improvements)

• Ruby's constant is

• Conclusion

11

How to use TypeProf for your projects

• Install VSCode "Ruby TypeProf" plugin

• Put typeprof.conf.json (or jsonc) in the top folder

• Reopen VSCode, and see if it works
• If it doesn't work well, that's a good chance to contribute

• For details, check my slide deck for RubyKaigi 2024

{
"typeprof_version": "experimental",
"rbs_dir": "sig/",

}

New features

• diagnostic_severity and analysis_unit_dirs

{
"typeprof_version": "experimental",
"rbs_dir": "sig/",
"diagnostic_severity": "info",
"analysis_unit_dirs": [
"lib/your_project/foo/",
"lib/your_project/bar/",

]
}

New features

"diagnostic_severity": change error level

• TypeProf still reports many false positives
• For a short-term solution, I provided a way to hide errors

severity: "error"
(default)

"warning" "info" "hint"

… and "none" are available

"analysis_unit_dirs": separate analysis

• You can specify directories to be analyzed together
• For a large project, you need to separate analysis for each directory
• API calls across file groups should be declared in RBS

TypeProf infers types by default

• … but as the project size grows, it will not scale

lib/typeprof/core

module TypeProf::Core
class Service
def update(path, text)
...

end
end

end

module TypeProf::LSP
serv = Core::Service.new
...
serv.update("path", "1+1")

end(String, String)
inferred

lib/typeprof

Separate analysis units

• Stop type inference between units

lib/typeprof/core

module TypeProf::Core
class Service
def update(path, text)
...

end
end

end

module TypeProf::LSP
serv = Core::Service.new
...
serv.update("path", "1+1")

end

lib/typeprof/core lib/typeprof/lsp

no inference

Write RBS between analysis units

module TypeProf::Core
class Service
def update(path, text)
...

end
end

end

module TypeProf::LSP
serv = Core::Service.new
...
serv.update("path", "1+1")

end

lib/typeprof/core lib/typeprof/lsp

module TypeProf::Core
class Service
def update_file: (String, String) -> void

end
end

sig/pub.rbs

typechecktypecheck

Today's talk

•What is TypeProf?

• How to use TypeProf (and recent improvements)

• Ruby's constant is

• Conclusion

19

Background: Ruby's constant is too complex

• Ruby's constant resolution
• C::Foo
• The current context has the priority

• M::Foo, P::Foo, Q::Foo
• The inheritance has the next priority

• B::Foo, A::Foo, ::Foo
• The scope has the last priority

• (Note: Z::Foo is not searched)

class P < Q
end

class A
class B < Z
class C < P
include M

Foo.new(...)
end

end
end What could this Foorefer to?

Constant analysis requires whole programs

myapp/main.rb
class MyApp
String.new(...)

end

myapp/string.rb
class MyApp
class String
end

end
This Stringshould be ::String…

No, that was MyApp::String

Constant analysis requires whole programs

myapp/main.rb
class MyApp
String.new(...)

end

myapp/string.rb
module M
class String
end

end
class MyApp
include M

end

This Stringshould be ::String…

Also indirectly makes
MyApp::Stringaccessible

How to handle constants in TypeProf

• Re-analyze existing constant resolutions:
• when a new constant is defined
• when the inheritance hierarchy is changed

myapp/main.rb
class MyApp
String.new(...)

end

myapp/string.rb
class MyApp
class String
end

end

MyApp::Stringis defined!
Re-analyze all "String" referencesUpdated: this is MyApp::String

Assume that this is ::String

How to handle constants in TypeProf

• Re-analyze existing constant resolutions:
• when a new constant is defined
• when the inheritance hierarchy is changed

myapp/main.rb
class MyApp
String.new(...)

end

myapp/string.rb
class MyApp
include M

end

This changes the inheritance!
Re-analyze all references under MyAppUpdated: this is MyApp::String

Assume that this is ::String

This mechanism caused an infinite-loop bug

• Found by @alpaca-tc

module M
module M
end

end

class MyApp
include M

end

0. There are ::Mand ::M::M

1. This M should be ::M
2. This changes the inheritance hierarchy!

Re-analyze all references under MyApp
3. Updated: This M should be ::M::M(!)
4. This changes the inheritance hierarchy!

Re-analyze all references under MyApp
5. Updated: This M should be ::M

Infinite
loop!

Similar problem was found in rbs-inline

• Constant could be inconsistent between ruby and rbs-inline

module M
module M
end

end

class MyApp
include M
include M

end

Ruby semantics: ::M::M

rbs-inline semantics: ::M
inconsistent

Solution: Give up the inheritance search

• … for the argument of include

• Ruby's constant resolution
• C::Foo
• The current context has the priority

• M::Foo, P::Foo, Q::Foo
• The inheritance has the next priority

• B::Foo, A::Foo, ::Foo
• The scope has the last priority

class P < Q
end

class A
class B
class C < P
include M

include Foo
end

end
end

What could
this Foo
refer to?

TypeProf no longer
searches for inheritance

This mechanism caused an infinite-loop bug

• Found by @alpaca-tc

module M
module M
end

end

class MyApp
include M

end

0. There are ::Mand ::M::M

1. This M should be ::M
2. This changes the inheritance!

Re-analyze all references under MyApp
3. Updated: This M should be ::M::M(!)
4. This changes the inheritance!

Re-analyze all references under MyApp
5. Updated: This M should be ::M

Infinite
loop!

TypeProf no longer
resolves this to ::M::M

Fixed!

Recap: Rewrite your Ruby Code

• … if you want to use TypeProf or rbs-inline (or Sorbet)
• Do not depend on the inheritance on constants

module M
module X
end

end

class MyApp
include M
include X

end

module M
module X
end

end

class MyApp
include M
include ::M::X

end

Don't do this! Do this

Today's talk

•What is TypeProf?

• How to use TypeProf (and recent improvements)

• Ruby's constant is

• Conclusion

30

Conclusion

• TypeProf is getting production-ready
(hopefully)

• Future work
• Experiment with other than TypeProf itself
• Still need many improvements
• Contribution is truly welcome!

• Come meet me at the venue bookstore→

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32

