Writing Ruby Scripts with
TypeProf

Yusuke Endoh (@ mame)
RubyKaigi 2025

STORES

v Partner with RubyStackNews

28~ Independent Ruby & Rails publication for senior developers

Why RubyStackNews? Partnerships & Sponsorships
» Focused on Ruby and Ruby on Rails = Article sponsorships

» Long-form articles based on real conference talks = Inline placements inside articles

» Audience of senior developers and tech leads » Sidebar visibility

» Readers from the US, Europe, and Asia

View partnership details
RubyStackMews turns conference talks and real-world

experience into practical, production-focused

technical articles.

rubystacknews.com Partnership info

PR: | wrote a book

« TRISZFTLDLL A BT
"Type Systems Distilled with TypeScript" DLL &
TypeScript THREL LV LF 5
(A Japanese book) EFars o i

EEAEST

e It explains how to write a type checker

... for a subset of TypeScript

PR: | wrote a book

e Inspired by &Y<, 25~ I\ NP5 (TAPL))

e "Types and Programming Languages"
(The most well-known textbook of type systems)

e |t explains:

e Base type system B 2ZLAM

e Subtyping

* Recursive types | am one of the translators
e Generics of TAPL (Ja version)

... In TypeScript

T TN

DLL &

TypeScript THEL LA HELS
Megar i/ EE

EEAEST

PR: | wrote a book

e [t uses TypeScript. Why? Dy LA
= 1t sells better thanRuby DL A
R T ey
e First-class functions make it convenient =

to explain the traditional type systems

e | want more contributors for Ruby types
 Interested in Steep or Sorbet? Check it out!

e Available at the bookstore (the 2nd floor)

* Book signing next break. Get one!

https://ruby-quiz-2025.storesinc.tech/

by mame, hogelog, and imalzumi /l

STORES

Today's talk

e What is TypeProf?
e How to use TypeProf effectively
e Ruby's constant is &

e Conclusion

Ruby Editor support

TypeError

e Error report, go to definition,
completion, etc.

e With minimal type annotations!

P~ Do you mean:
e e 5.times

Features

* Type inference, error/warning report
e Go to definition

e Completion

» Go to references

e Go to type references

e Automatic rename (method, constant)

* Inline RBS (= rbs-inline)

) File Edit Selection --* &~ £ typeprof [WSL: Ubuntu]

astrb X service.rb 9
lib > typeprof > core > astrb
module TypeProf::Core
class AST
#: (String, String) -> TypeProf::Core::AST::ProgramNode?
def self.parse rb(path, src)
result = Prism.parse(src)

return nil unless result.errors.empty?

+H o
Il
o

[

raw_scope = result.value

raise unless raw_scope.type == :program_node
Fiber[:comments] = result.comments

cref = CRef::Toplevel
lenv = LocalEnv.new(path, cref, {}, [])

ProgramNode .new(raw_scope, lenv)

end
S WSEUbuntu | I°v2* O ®368 A0 WO @, Screen Reader Optimized Ln7, Col1 Spaces: 2

UTF-8

LF

Ruby TypeProf &

8 2

Progresses since last RubyKaigi

e Called for contributions
e Got about 100+ PRs (Thanks all contributors!)

e Supported for Ruby's full syntax

* Created TypeProf.wasm (a demo in browser by ruby.wasm)
e https://mame.github.io/typeprof.wasm/

* Improved for practical use cases 7
- Today's main topics

* Fixed a bug of infinite-loop

Today's talk

e What is TypeProf?
* How to use TypeProf (and recent improvements)
e Ruby's constant is &)

e Conclusion

11

How to use TypeProf for your projects

e [nstall VSCode "Ruby TypeProf" plugin

* Put typeprof.conf.json (or jsonc) in the top folder

{
"typeprof version": "experimental",
"rbs dir": "sig/",
)
* Reopen VSCode, and see if it works 44

-~
-

e |f it doesn't work well, that's a good chance to contribute (2

 For details, check my slide deck for RubyKaigi 2024

New features

e diagnostic_severity and analysis_unit_dirs

/

{

}

_

"typeprof version": "experimental",
"rbs dir": "sig/",]
"diagnostic severity": "info'l,

"analysis unit dirs": [
"lib/your _project/foo/",

- New features

"lib/your project/bar/",
] —

"diagnostic_severity": change error level

* TypeProf still reports many false positives

e For a short-term solution, | provided a way to hide errors

#: (untyped) -> nil
def foo(n) def foo(n)
end end

foo(1, 2) foo(1, 2)

severity: "error" "warning"
(default)

#: (untyped) -> nil

#. (untyped) -> nil #: (untyped) -> nil
def foo(n) def foo(n)
end end

foo(1, 2) foo(1, 2)

"Info" "hint"

... and "none" are available

"analysis_unit_dirs": separate analysis

e You can specify directories to be analyzed together
e For a large project, you need to separate analysis for each directory

e API calls across file groups should be declared in RBS

/module TypeProf: :Core ‘module TypeProf: :LSP
serv = Core::Service.new

class Service
def update(path, tex C
KSG rv.update("path", "1+1'

end (String, String) | | €nd)

enfj']ﬂa/typeprof/ inferred
J
lib/typeprof

-

e ... but as the project size grows, it will not scale

‘module TypeProf::LSP

/module TypeProf::Core
class Service serv = Core::Service.new
def update(path, tex C
. serv.update("path", "1+1'
end no inference)
eNth/typeprof/core J l
\end
lib/typeprof/core lib/typeprof/Isp

e Stop type inference between units

‘Write RBS between analysis units

~

(module TypeProf: :LSP
serv = Core::Service.new

(module TypeProf: :Core
class Service
def update(path, text)

. o y.
end \\

end

end typecheck

serv.update("path", "1+11)
end

———

typecheck

lib/typeprof/Isp

~

Iib/typeprof/ core

sig/pub.rbs

‘module TypePxof: :Core

class Servic Y.

def update file: (String, String) -> void

end
\end

Today's talk

e What is TypeProf?

* How to use TypeProf (and recent improvements)
 Ruby's constant is &)

e Conclusion

19

Background: Ruby's constant is too complex

-~ B , .
class P < Q e Ruby's constant resolution
end eC::FoO
class A e The current context has the priority
cla{:s BC<ZP «M: :FogP::FoqQ: :Foo
class C < o o
include M The inheritance has the next priority

eB::FoQA::Foqg::Foo
Foo.new(...) e The scope has the last priority

end .
end * (Note: Z::Foo is not searched)
\end What could this Foorefer to?]

Constant analysis requires whole programs

% myapp/main.rb \ 4 myapp/string.f%
class MyApp class MyApp
String.new(...) class String

end J end
\end
TMsStringﬁunmjbe::String.]

[No;&mtmmsMyApp::Strin

Constant analysis requires whole programs

myapp/main.rb (# myapp/string.EE
class MyApp module M
String.new(...) class String
end) end
end
TMsStringﬁunmjbe::String] class MyApp
include M
kend

Also indirectly makes
MyApp: :Stringccessible

How to handle constants in TypeProf

e Re-analyze existing constant resolutions:
 when a new constant is defined

 when the inheritance hierarchy is changed

'# myapp/main.rb | # myapp/string.rb
class MyApp class MyApp
String.new(.... class String

en , end
- g \end
A that thisis : : §
e e e e [MyApp: : Strinds defined!

, " . I
Updated: this is MyApp: : St ring Re-analyze all "Strind references

-

How to handle constants in TypeProf

e Re-analyze existing constant resolutions:

e when a new constant is defined

 when the inheritance hierarchy is changed

myapp/main.rb # myapp/string.ﬁo

class MyApp class MyApp
String.new(.. .|

include M
Assume that thisis : : S @ , . :
\ A [This changes the inheritance!

— ’
Updated: this is MyApp: : St ring Re-analyze all references under MyApp

-

This mechanism caused an infinite-loop bug

e Found by @alpaca-tc

p %O. There are : :Mand : : M: :M]
module M

module M //*
end 1. ThisMshould be : : M
end 2. This changes the inheritance hierarchy!
Re-analyze all references under MyApp Infinite
class MyApp 3. Updated: This Mshould be : :M: : M(!) | |
include 4. This changes the inheritance hierarchy! oop.
end Re-analyze all references under MyApp

5. Updated: This Mshould be : : M

Similar problem was found in rbs-inline

e Constant could be inconsistent between ruby and rbs-inline

4)

module M
module M
end

end

class MyApp

include M Ruby semantics: = :M: : M
include inconsistent
end rbs-inline semantics: = : M

Solution: Give up the inheritance search

p
class P < (Q
end

class A
class B
class C < P
include M

include Foo

end p S~

end What could

end this Foo
N

refer to?
_

J

e ...for the argument of 1nclude

e Ruby's constant resolution

eC:FooO TypeProf no longer
searches for inheritance

e The current contex

eB::FoQA::FoqQ::Foo0

e The scope has the last priority

e Found by @alpaca-tc

g %O. There are : :Mand : : M: :M]
module M

module M /f*
end 1. This Mshould be : : M
end 2. This changes the inheritance!

Re-analyze all references under MyApp
class MyApp

include TypeProf no longer
\end) resolves thisto : :M: :M

e ... if you want to use TypeProf or rbs-inline (or Sorbet)

e Do not depend on the inheritance on constants

[Don't do this! l

[

module M
module X
end

end

N\

end
\

\

class MyApp
include M
include X

J

/module M
module X
end

end

class MyApp
include M
include :
\end

:M::)‘F

jDo this]

e What is TypeProf?
* How to use TypeProf (and recent improvements)
e Ruby's constant is &)

e Conclusion

30

Conclusion

: ' ' lon- s o —1
TypeProf is getting production-ready S EIA
(hopefully) DLL &

EEEET 0 @

e Future work
e Experiment with other than TypeProf itself

e Still need many improvements
e Contribution is truly welcome!

e Come meet me at the venue bookstore—

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32

