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PR: | wrote a book

« TRISZFTLDLL A BT
"Type Systems Distilled with TypeScript" DLL &
TypeScript THREL LV LF 5
(A Japanese book) EFars o i

EEAEST

e It explains how to write a type checker

... for a subset of TypeScript




PR: | wrote a book

e Inspired by &Y<, 25~ I\ NP5 (TAPL))

e "Types and Programming Languages"
(The most well-known textbook of type systems)

e |t explains:

e Base type system B 2ZLAM

e Subtyping

* Recursive types | am one of the translators
e Generics of TAPL (Ja version)

... In TypeScript

T TN

DLL &

TypeScript THEL LA HELS
Megar i/ EE

EEAEST




PR: | wrote a book

e [t uses TypeScript. Why? Dy LA
= 1t sells better thanRuby DL A
R T ey
e First-class functions make it convenient =

to explain the traditional type systems

e | want more contributors for Ruby types
 Interested in Steep or Sorbet? Check it out!

e Available at the bookstore (the 2nd floor)

* Book signing next break. Get one!




https://ruby-quiz-2025.storesinc.tech/

by mame, hogelog, and imalzumi /l
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Today's talk

e What is TypeProf?
e How to use TypeProf effectively
e Ruby's constant is &

e Conclusion



Ruby Editor support

TypeError

e Error report, go to definition,
completion, etc.

e With minimal type annotations!

P~ Do you mean:
e e 5.times




Features

* Type inference, error/warning report
e Go to definition

e Completion

» Go to references

e Go to type references

e Automatic rename (method, constant)

* Inline RBS (= rbs-inline)



) File Edit Selection --* &~ £ typeprof [WSL: Ubuntu]

astrb X service.rb 9
lib > typeprof > core > astrb
module TypeProf::Core
class AST
#: (String, String) -> TypeProf::Core::AST::ProgramNode?
def self.parse rb(path, src)
result = Prism.parse(src)

return nil unless result.errors.empty?

+H o
Il
o

[

raw_scope = result.value

raise unless raw_scope.type == :program_node
Fiber[ :comments] = result.comments

cref = CRef::Toplevel
lenv = LocalEnv.new(path, cref, {}, [])

ProgramNode .new(raw_scope, lenv)

end
S WSEUbuntu | I°v2* O ®368 A0 WO @, Screen Reader Optimized Ln7, Col1 Spaces: 2

UTF-8

LF

Ruby TypeProf &

8 2




Progresses since last RubyKaigi

e Called for contributions
e Got about 100+ PRs (Thanks all contributors!)

e Supported for Ruby's full syntax

* Created TypeProf.wasm (a demo in browser by ruby.wasm)
e https://mame.github.io/typeprof.wasm/

* Improved for practical use cases 7
- Today's main topics

* Fixed a bug of infinite-loop



Today's talk

e What is TypeProf?
* How to use TypeProf (and recent improvements)
e Ruby's constant is &)

e Conclusion
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How to use TypeProf for your projects

e [nstall VSCode "Ruby TypeProf" plugin

* Put typeprof.conf.json (or jsonc) in the top folder

{
"typeprof version": "experimental",
"rbs dir": "sig/",
)
* Reopen VSCode, and see if it works 44

-~
-

e |f it doesn't work well, that's a good chance to contribute (2

 For details, check my slide deck for RubyKaigi 2024



New features

e diagnostic_severity and analysis_unit_dirs

/

{

}

\_

"typeprof version": "experimental",
"rbs dir": "sig/", ]
"diagnostic severity": "info'l,

"analysis unit dirs": [
"lib/your _project/foo/",

- New features

"lib/your project/bar/",
] —




"diagnostic_severity": change error level

* TypeProf still reports many false positives

e For a short-term solution, | provided a way to hide errors

#: (untyped) -> nil
def foo(n) def foo(n)
end end

foo(1, 2) foo(1, 2)

severity: "error"  "warning"
(default)

#: (untyped) -> nil

#. (untyped) -> nil #: (untyped) -> nil
def foo(n) def foo(n)
end end

foo(1, 2) foo(1, 2)

"Info" "hint"

... and "none" are available



"analysis_unit_dirs": separate analysis

e You can specify directories to be analyzed together
e For a large project, you need to separate analysis for each directory

e API calls across file groups should be declared in RBS



/module TypeProf: :Core ‘module TypeProf: :LSP
serv = Core::Service.new

class Service
def update(path, tex C
KSG rv.update("path", "1+1'

end (String, String) | | €nd )

enfj']ﬂa/typeprof/ inferred
J
lib/typeprof

-

e ... but as the project size grows, it will not scale



‘module TypeProf::LSP

/module TypeProf::Core
class Service serv = Core::Service.new
def update(path, tex C
. serv.update("path", "1+1'
end no inference )
eNth/typeprof/core J l
\end
lib/typeprof/core lib/typeprof/Isp

e Stop type inference between units



‘Write RBS between analysis units

~

(module TypeProf: :LSP
serv = Core::Service.new

(module TypeProf: :Core
class Service
def update(path, text)

. o y.
end \\

end

end typecheck

serv.update("path", "1+11)
end

———

typecheck

lib/typeprof/Isp

~

Iib/typeprof/ core

sig/pub.rbs

‘module TypePxof: :Core

class Servic Y.

def update file: (String, String) -> void

end
\end




Today's talk

e What is TypeProf?

* How to use TypeProf (and recent improvements)
 Ruby's constant is &)

e Conclusion
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Background: Ruby's constant is too complex

-~ B , .
class P < Q e Ruby's constant resolution
end eC::FoO
class A e The current context has the priority
cla{:s BC<ZP «M: :FogP::FoqQ: :Foo
class C < o o
include M  The inheritance has the next priority

eB::FoQA::Foqg::Foo
Foo.new(...) e The scope has the last priority

end .
end * (Note: Z::Foo is not searched)
\end What could this Foorefer to?]




Constant analysis requires whole programs

% myapp/main.rb \ 4 myapp/string.f%
class MyApp class MyApp
String.new(...) class String

end J end
\end
TMsStringﬁunmjbe::String.]

[No;&mtmmsMyApp::Strin




Constant analysis requires whole programs

# myapp/main.rb (# myapp/string.EE
class MyApp module M
String.new(...) class String
end ) end
end
TMsStringﬁunmjbe::String ] class MyApp
include M
kend

Also indirectly makes
MyApp: :Stringccessible




How to handle constants in TypeProf

e Re-analyze existing constant resolutions:
 when a new constant is defined

 when the inheritance hierarchy is changed

'# myapp/main.rb | # myapp/string.rb
class MyApp class MyApp
String.new(.... class String

en , end
- g \end
A that thisis : : §
e e e e [ MyApp: : Strinds defined!

, " . I
Updated: this is MyApp: : St ring Re-analyze all "Strind references

-




How to handle constants in TypeProf

e Re-analyze existing constant resolutions:

e when a new constant is defined

 when the inheritance hierarchy is changed

# myapp/main.rb # myapp/string.ﬁo

class MyApp class MyApp
String.new(.. .|

include M
Assume that thisis : : S @ , . :
\ A [ This changes the inheritance!

— ’
Updated: this is MyApp: : St ring Re-analyze all references under MyApp

-




This mechanism caused an infinite-loop bug

e Found by @alpaca-tc

p %O. There are : :Mand : : M: :M]
module M

module M //*
end 1. ThisMshould be : : M
end 2. This changes the inheritance hierarchy!
Re-analyze all references under MyApp Infinite
class MyApp 3. Updated: This Mshould be : :M: : M(!) | |
include 4. This changes the inheritance hierarchy! oop.
end Re-analyze all references under MyApp

5. Updated: This Mshould be : : M




Similar problem was found in rbs-inline

e Constant could be inconsistent between ruby and rbs-inline

4 )

module M
module M
end

end

class MyApp

include M Ruby semantics: = :M: : M
include inconsistent
end rbs-inline semantics: = : M




Solution: Give up the inheritance search

p
class P < (Q
end

class A
class B
class C < P
include M

include Foo

end p S~

end What could

end this Foo
N

refer to?
\_

J

e ...for the argument of 1nclude

e Ruby's constant resolution

eC:FooO TypeProf no longer
searches for inheritance

e The current contex

eB::FoQA::FoqQ::Foo0

e The scope has the last priority



e Found by @alpaca-tc

g %O. There are : :Mand : : M: :M]
module M

module M /f*
end 1. This Mshould be : : M
end 2. This changes the inheritance!

Re-analyze all references under MyApp
class MyApp

include TypeProf no longer
\end ) resolves thisto : :M: :M




e ... if you want to use TypeProf or rbs-inline (or Sorbet)

e Do not depend on the inheritance on constants

[Don't do this! l

[

module M
module X
end

end

N\

end
\

\

class MyApp
include M
include X

J

/module M
module X
end

end

class MyApp
include M
include :
\end

:M::)‘F

jDo this]




e What is TypeProf?
* How to use TypeProf (and recent improvements)
e Ruby's constant is &)

e Conclusion

30



Conclusion

: ' ' lon- s o —1
TypeProf is getting production-ready S EIA
(hopefully) DLL &

EEEET 0 @

e Future work
e Experiment with other than TypeProf itself

e Still need many improvements
e Contribution is truly welcome!

e Come meet me at the venue bookstore—
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